Những câu hỏi liên quan
ND
Xem chi tiết
H24
Xem chi tiết
CN
15 tháng 4 2019 lúc 20:23

bn tham khảo câu hỏi này nhé:

https://olm.vn/hoi-dap/detail/98207379947.html

k nha

^-^

Bình luận (0)
ZZ
15 tháng 4 2019 lúc 21:54

Xét 1001 số \(3;3^2;3^3;.....;3^{1001}\) thì tồn tại 2 số khi chia cho 1000 có cùng số dư.

Giả sử 2 số \(3^m;3^n\left(1\le n< m\le1001\right)\) khi chia cho 1000 có cùng số dư.

Khi đó \(3^m-3^n⋮1000\)

\(\Rightarrow3^n\left(3^{m-n}-1\right)⋮1000\)

Lại có  \(\left(3^n;1000\right)=1\Rightarrow3^{m-n}-1⋮1000\)

\(\Rightarrow3^{m-n}=\overline{....001}\)

\(\Rightarrowđpcm\) 

Bình luận (0)
NL
29 tháng 3 2020 lúc 10:23

Gọi dãy số: 3, 32, 33, …, 31001. Theo nguyên lý Di-rich-le luôn tồn hai số trong 1001 số trên khi chia cho 1000 có cùng số dư.

Giả sử hai số: 3m, 3n, trong đó: 1 ≤ n < m ≤ 1001.

=>3m – 3n ⋮ 1000

=> 3n.(3m-n – 1) ⋮ 1000

Vì 3n ko chia he^'t cho 1000 nên suy ra: 3m-n – 1 ⋮ 1000

=> 3m-n – 1 = 1000k (k \(\in\) N*)

=> 3m-n = 1000k + 1

=> 3m-n có chữ số tận cùng là 001

=> 3k có chữ số tận cùng là 001 (đpcm)

chu'c hok to^'t

Bình luận (0)
 Khách vãng lai đã xóa
CM
Xem chi tiết
NB
21 tháng 7 2019 lúc 9:50

3k=(...01)

do 3*0=0 nen k phai thuoc n*

Bình luận (0)
QS
Xem chi tiết
H24
22 tháng 1 2018 lúc 23:25

Áp dụng nguyên lý Di-rich-le, ta có:

Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.

Gỉa sử hai số: 3m, 3n trong đó \(1\le n\le m\le1001\)

\(\Rightarrow3^m-3^n⋮1000\)

\(\Rightarrow3^n.\left(3^{m-n}-1\right)⋮1000\)

Vì 3n không chia hết cho 1000 nên => \(3^{m-n}-1⋮1000\)

\(\Rightarrow3^{m-n}-1=100k\left(k\in N\cdot\right)\)

\(\Rightarrow3^{m-n}=1000k+1\)

=> 3m - n có tận cùng là 001

=> ĐPCM

Bình luận (0)
H24
24 tháng 1 2018 lúc 13:08

Áp dụng nguyên lý Di-rich-le, ta có:
Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.
Gỉa sử hai số: 3m, 3n
 trong đó 1 ≤ n ≤ m ≤ 1001
⇒3m − 3n⋮1000
⇒3n. 3m−n − 1 ⋮1000
Vì 3n không chia hết cho 1000 nên => 3
m−n − 1⋮1000
⇒3m−n − 1 = 100k k ∈ N ·
⇒3m−n = 1000k + 1
=> 3m - n
 có tận cùng là 001
=> ĐPCM

p/s : kham khảo

Bình luận (0)
DN
Xem chi tiết
TN
Xem chi tiết
LT
Xem chi tiết
DT
Xem chi tiết
DT
6 tháng 11 2017 lúc 22:21

giải theo tiểu học nhé

Bình luận (0)
CT
Xem chi tiết
NH
9 tháng 7 2016 lúc 8:22

Những số 3k có chữ số tận cùng là 001

=> Số có chữ số tận cùng là 001 phải chia hết cho 3

=> (0 + 0 + 1 + .... ) phải chia hết cho 3

=> (1 + ....) chia hết cho 3 

=> ..... chỉ có thể là cách số: 2 ; 5;8

Bình luận (0)