chứng minh rằng : 1/2^2+1/3^2+1/4^2+...+1/100^2 < 1
giúp mình với
Cho A=1+1/2+1/3+1/4+....+1/100. Chứng minh rằng A không phải là số tự nhiên.
Làm ơn giải dùm mình với !!!!!
Cho A= 1+1/2+1/3+1/4+...+1/100
Chứng minh rằng A không phải là số tự nhiên!!! mình sẽ tick cho bạn nào trả lời giúp mình!!!!
1)Chứng minh rằng: 4n + 7/6n +1 là phân số tối giản
2) Cho A=1-1/2+1/3-1/4+...+1/99-1/100
Chứng tỏ:7/12<A<5/6
Làm ơn giải ra giúp mình nha :-)
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
Chứng minh rằng
x4 +y4 = 2x2(x+1)-2y2(y-1)
giúp mình với đừng bơ mình mà
\(x^4+y^4=\left(a^2+b^2\right)^2\)
\(=x^4+y^4+2\left(xy\right)^2\)
Chứng minh rằng :
100 - ( 1 + 1/2 + 1/3 + .....+ 1/100) = 1/2 + 2/3 + 3/4 + .......+ 99/100
Ta có :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+...+\left(1-\frac{99}{100}\right)\right]\)
\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-100+\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
ta có 100-(1+1/2+1/3+.....+1/100)
=(1+1+1......1)(99 số 1)-(1+1/2+1/3+......+1/100)
=(1-1)+(1-1/2)+(1-1/3)+.......+(1-1/100)
=1/2+2/3+3/4+.....+99/100
chứng minh rằng : 1/2^2+1/3^2+1/4^2+...+1/100^2 < 1
CM rằng 1/3 + 2/32 + 3/32 + ... + 100/3100 < 3/4
Ai giúp mình giải bài này với ạ!!!!Mình cảm ơn!
Đặt A=1/3+2/3^2+...+100/3^100
=>3A=1+2/3+...+100/2^99
=>3A-A=1+(2/3-1/3)+(3/32-2/32)+...(100/299-99/2^99)-100/3100
=>2A=1+1/3+1/3+1/32+...+1/399-100/3100
Ta lại đặt tiếp B=1/3+...+1/399
tiếp tục làm 3B=1+...+1/398
=>3B-B=1+...+1/398-1/3+...+1/399=1-1/3^99
=>B=(1-1/3^99)/2 (đến đây viết mũ là ^ vì lười)
đến đây ta có 2A=1+(1-1/3^99)/2 -100/3^100
=(3^100-100)/3^100 +(1-1/3^99)/2
quy đồng lên nó thành
2A=2x3^100-200/3^100x2 +(3^99-1)/3^99x2
2A=(2x3^100-200+3^100-3)/3^100x2
=(3^101-203)/3^100x2
ta c/m 2a<3/2 là ok
*nhân chéo lên =>2(3^101-203)<3^101x2
đồng nghĩa với 2x3^101 -406<3^101x2 (điều này luôn đúng)
=>bài toán đc chứng minh
Chứng minh rằng nếu các hệ số của pt bậc 2
x2+p1x +q1=0 và x2+p2x+q2=0
Liên hệ với nhau bởi hệ thức p1p2 >=2(q1+q2) thì ít nhất 1 trong 2 pt có nghiệm?
GIÚP MÌNH VỚI!
Giả sử 2 pt vô nghiệm. Khi đó \(p_1^2< 4q_1;p_2^2< 4q_2\Rightarrow p_1^2+p_2^2< 4\left(q_1+q_2\right)\le2p_1p_2\Leftrightarrow\left(p_1-p_2\right)^2< 0\). (vô lí)
Do đó tồn tại 1 pt có nghiệm