Tim x , y thuoc N* sao cho : 2^x + 57 = y^2
tim x;y thuoc n sao cho:
36-y^2=8[x-2010]^2
ta có \(36-y^2=\left(6-y\right)\left(6+y\right)=8\left(x-2010\right)^2\)
Do \(y\in N\Rightarrow y\in\left[0,6\right]\)
mà vế trái là số chẵn nên y là số chẵn
nên \(y\in\left\{0;2;4;6\right\}\) thay lại ta có cặp giá trị thỏa mãn là
\(\hept{\begin{cases}x=2008\text{ hoặc }x=2012\\y=2\end{cases}}\text{ hoặc }\hept{\begin{cases}x=2010\\y=6\end{cases}}\)
tim x,y,z thuoc N sao cho 1/x+1/y+1/z=1/2
tim x,y thuoc N sao x^2+3^y=35
x2+3y =35 <=> x2 = 35 -3y => x2 là số chẵn
đặt x =2k (k \(\in N\)) => (2k)2 =35 -3y \(\le35-3^0\)=34 => k2 \(\le\frac{34}{4}\approx8\)=> k \(\le\sqrt{8}\approx2\)
k=0 => x=0 => 3y =35 (vô nghiệm)
k=1 => x=2 => 3y =35-22 =31 (vô nghiệm)
k=2 => x=4 =>3y =35-42 = 19 (vô nghiệm)
vậy k có x;y thỏa mãn
tim x y thuoc n sao cho 1/x+1/y=1/2
help meeeeeeeeee
tim x,y thuoc Z sao cho x^2+y^2=2020
3) Tim n thuoc Z sao cho :
a)3n+1chia het cho (n-2)
b)4n-3 chia het cho (2n+3)
4)tim x,y thuoc Z sao cho :
a)xy-3x-y-6=7
b)2xy+10y + x =5
ai nhanh minh tick cho
tim x,y thuoc z sao cho (x^2-2) chia het cho (xy+2)
tim x, y thuoc Z
sao cho x^6-x^4+2x^3+2x^2=y^2
\(x^6-x^4+2x^3+2x^2=y^2\)
\(y^2+y=x^4+x^3+x^2+x=0\left(1\right)\)
\(\Leftrightarrow y\left(y+1\right)=x\left(x^3+x^2+x+1\right)=0\)
Ta có 4 PT
\(x1=0;y1=0\)
\(x2=0;y2=-1\)
\(x3=-1;y3=0\)
\(x4=-1;y4=-1\)
Cho x thuoc {-3;-2;-1;2;3;4;5},y thuoc {-3;-1;0;1;2;3} biet x+ y = 2 tim x, y