tìm GTNN A=2019 x^2-2x+1
1.Tìm x: |4-2x|+|x-2|=2-x
2.Tìm GTNN của biểu thức: A=|x-1|+|x-2|+|x-2019|-1
Tìm GTNN của biểu thức:
A=2019-|x-y|^2018-|2x+1|-|4x-2|
Tìm gtln của
A=5-x^2+2x-4y^2-4y
Tìm gtnn
A=5x^2+5y^2+8xy-2x+2y+2019
A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
Vậy MinA= 2017 khi x=1; y=-1
A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
Vậy Max A bằng 7 khi x=1; y=-1/2
Tìm GTNN của biểu thức A\(=|2x-2|+|2x-2019|\)với x là số nguyên
Áp dụng bất đẳng thức trị tuyệt đối,ta có:
\(\left|2x+2\right|+\left|2x-2019\right|=\left|2x+2\right|+\left|2019-2x\right|\)
\(\ge\left|2x+2+2019-2x\right|\)
\(=2021\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left(2x+2\right)\left(2x-2019\right)\ge0\)
\(\Rightarrow-1\le x\le\frac{2019}{2}\)
\(\Rightarrow-1\le x\le1009\)
Vậy \(A_{min}=2021\Leftrightarrow-1\le x\le1009\)
zZz Phan Gia Huy zZz
Dấu \("="\Leftrightarrow-1\le x\le1009,5\)
Tìm GTNN của biểu thức A = \(\frac{x^2-2x+2019}{2019x^2}\)
1.Tìm GTNN của biểu thức:
x2 + 2y2 - 2xy -2y - 2x +2019
\(A=x^2+2y^2-2xy-2y-2x+2019\)
\(A=x^2+y^2+y^2-2xy+2y-4y-2x+2019\)
\(A=\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+y^2-4y+4+2014\)
\(A=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y-2\right)^2+2014\)
\(A=\left(x-y-1\right)^2+\left(y-2\right)^2+2014\ge2014\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2-1=0\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Tìm GTNN hoặc GTLN của biểu thức :
a ) 3x - x2
b ) x2 - 6x + 18
c ) 2x2 + 10x - 1
d ) x2 + y2 - 2x + 6y + 2019
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
tìm gtnn của A=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+2019
+) Xét Ix-1I + Ix-5I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-1|+|x-5|\ge|x-1-x+5|=4\)
Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0
+) Xét Ix-2I + Ix-4I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-2|+|x-4|\ge|x-2-x+4|=2\)
Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0
+) Xét Ix-3I
Vì Ix-3I\(\ge\)0
Dấu "=' xảy ra khi x-3=0 hay x=3
Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025
Dấu"=" xảy ra khi x=3
Vậy gtnn của A là 2025 tại x=3
khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x
Phải là Bất đẳng thức : \(|a|+|b|\ge|a+b|\) chứ
tìm GTNN của A=|2x-2019|+|2x-3|
A=|2x-2019|+|2x-3|
A=|2x-2019|+|3-2x| (Vì |A|=|-A| nha bạn)
A lớn hơn hoặc =|2x-2019+3-2x|
=2016
Vậy GTNN A=2016