so sánh 9^30 và 27^20 2^210vaf 5^140
So sánh:
a) 9^30 và 27^20 b)2^10 và 5^140
\(^{9^{30}=3^{2^{30}}=3^{60}}\) mặt khác 2720
2720\(=3^{3^{20}}\)=360
vậy 930=2720
a) Ta có : \(9^{30}=\left(3^2\right)^{30}=3^{60}\)
\(27^{20}=\left(3^3\right)^{20}=3^{60}\)
\(\Rightarrow9^{30}=27^{20}\)
b) \(2^{10}< 5^{140}\) Vì \(2< 5;10< 140\)
Hok tốt .
So sánh :
a) 930 và 2720
b) 2110 và 5140
a. \(9^{30}=\left(3^2\right)^{30}=3^{60}\)(1)
\(27^{20}=\left(3^3\right)^{20}=3^{60}\)(2)
Từ (1) và (2) => 930=2720.
b. \(2^{110}=\left(2^{11}\right)^{10}\)
\(5^{140}=\left(5^{14}\right)^{10}\)
-> Vì cùng số mũ nên xét 211 và 514.
Ta có: 2 < 5 và 11 < 14
=> 211 < 514
=> (211)10 < (514)10
Vậy 2110 < 5140.
so sánh
a. 2^100 và 5^50
b. 4^30 và 8^20
c. 9^30 và 27^20
d. 2^210 và 5^145
so sánh:
9^20 và 27 ^13
10^30 và 2^100
125^5 và 25^7
a)9^20 và 27^13
9^20=(3^2)^20=3^40
27^13=(3^3)^13=3^39
vì 3^40 > 3^39 =>9^20>27^13
b)10^30 và 2^100
10^30=(10^3)^10=30^10
2^100=(2^10)^10=20^10
vì 30^10>20^0 => 10^30>2^100
c)125^5 và 25^7
125^5=(5^3)^5=5^15
25^7=(5^2)^7=5^14
vì 5^15>5^14 =>125^5>25^7
Ta có :
a) \(9^{20}=\left(3^2\right)^{20}=3^{40};27^{13}=\left(3^3\right)^{13}=3^{39}\)
Vì \(3^{40}>3^{39}\Rightarrow9^{20}>27^{13}\)
Vậy \(9^{20}>27^{13}\)
so sánh : 9^30 và 27^20
\(9^{30}\)và \(27^{20}\)
Ta có :
\(9^{30}=\left(9^3\right)^{10}=729^{10}\)
\(27^{20}=\left(27^2\right)^{10}=729^{10}\)
Vì \(729^{10}=729^{10}\)nên \(9^{30}=27^{20}\)
9^30 = (3^2)^30 = 3^60
27^20 = (3^3)20 = 3^60
=> 9^30 = 27^20
930 và 2720
Ta có :
930 = (93)10 = 72910
2720 = (272)10 = 72910
Vì 72910 = 72910 nên 930 = 2720
so sánh : 9 mũ 30 và 27 mũ 20
Mời thí chủ nhận bài:)), sai nhớ bảo tôi thí chủ đừng giấu:))
Ta có: 930= (32)30 = 360
2720= (33)20 = 360
⇒⇒ 930 = 2720
so sánh 2210 và 5140
Ta có: 2210= (23)70 = 870
5140 = (52)70=2570
Mà : 870 < 2570
⇒⇒ 2210<5140
\(9^{30}=\left(3^2\right)^{30}=3^{60}\)
\(27^{20}=\left(3^3\right)^{20}=3^{60}\)
\(3^{60}=3^{60}\)⇒\(9^{30}=27^{20}\)
SO SÁNH:
A/27^5 VÀ 243^3
B/2^300 VÀ 3^200
C/125^5 VÀ 25^7
D/9^20 VÀ 27^13
E/3^54 VÀ 2^81
G/10^30 VÀ 2^100
a) 275 và 2433
Ta có :
275 = ( 33 )5 = 315
2433 = ( 35 )3 = 315
Vì 315 = 315 Nên 275 = 2433
b) 2300 và 3200
Ta có :
2300 = ( 23 )100 = 8100
3200 = ( 32 )100 = 9100
Vì 8100 < 9100 Nên 2300 < 3200
c) 1255 và 257
Ta có :
1255 = ( 53 )5 = 515
257 = ( 52 )7 = 514
Vì 515 > 514 Nên 1255 > 277
d) 920 và 2713
Ta có :
920 = ( 32 )20 = 340
2713 = ( 33 )13 = 339
Vì 340 > 339 Nên 920 > 2713
e) 354 và 281
Ta có :
354 = ( 32 )27 = 927
281 = ( 23 )27 = 827
Vì 927 > 827 Nên 354 > 281
g) 1030 và 2100
Ta có :
1030 = ( 103 )10 = 100010
2100 = ( 210 )10 = 102410
Vì 100010 < 102410 Nên 1030 < 2100
A/ 27^5 =243^3
B/2^300<3^200
C/125^5>25^7
D/9^20>27^13
E/3^54>2^81
G/10^30<2^100
So sánh
a,\(9^{27}\) và \(81^3\)
b,\(5^{14}\) và \(27^7\)
c, \(10^{30}\) và \(2^{100}\)
\(a,81^3=\left(9^2\right)^3=9^6\)
Vì \(9^{27}>9^6\) nên \(9^{27}>81^3\)
\(b,5^{14}=\left(5^2\right)^7=25^7\)
Vì \(25^7< 27^7\) nên \(5^{14}< 27^7\)
\(c,10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\) nên \(10^{30}< 2^{100}\)
Bài 4. So sánh:
a) 2^30 và 3^20
b) 243^7 và 9^10 x 27^5
Bài 5. Tìm các số tự nhiên x, biết lũy thừa 52x −3 thỏa mãn các điều kiện
100 < 52x-3<59
Bài 4:
\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)
Bài 5:
100< 52x-3 < 59
Đề vầy hả em?