Những câu hỏi liên quan
CA
Xem chi tiết
H24
17 tháng 4 2021 lúc 16:50

Ta có: B = (2018 + 2019)/(2019 + 2020) = (2018 + 2019)/4039 = 2018/4039 + 2019/4039
Ta thấy : 2018/2019 > 2018/4039
            2019/2020 > 2019/4039
=> 2018/2019 + 2019/2020 > 2018/4039 > 2019/4039
=> 2018/2019 + 2019/2020 > (2018 + 2019)/(2019 + 2020)
=> A  > B

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
11 tháng 5 2019 lúc 17:42

\(A=\frac{2018^{2019}-1}{2018^{2019}+1}=\frac{2018^{2019}+1-2}{2018^{2019}+1}=\frac{2018^{2019}+1}{2018^{2019}+1}-\frac{2}{2018^{2019}+1}=1-\frac{2}{2018^{2019}+1}\)

\(B=\frac{2018^{2019}}{2018^{2019}+2}=\frac{2018^{2019}+2-2}{2018^{2019}+2}=\frac{2018^{2019}+2}{2018^{2019}+2}-\frac{2}{2018^{2019}+2}=1-\frac{2}{2018^{2019}+2}\)

Ta có: \(\frac{2}{2018^{2019}+1}>\frac{2}{2018^{2019}+2}\)

\(\Rightarrow1-\frac{2}{2018^{2019}+1}< 1-\frac{2}{2018^{2019}+2}\)

\(\Rightarrow A< B\)

Vậy .....

Bình luận (0)
DX
Xem chi tiết
AH
14 tháng 5 2021 lúc 1:01

Lời giải:

Ta có: 

\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)

\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)

$\Rightarrow B+1>A+1$

$\Rightarrow B>A$

Bình luận (0)
TH
Xem chi tiết
PN
Xem chi tiết
TH
Xem chi tiết
TD
21 tháng 6 2019 lúc 15:50

Bài toán : So sánh A và B

\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)

+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)

                     \(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)

                      \(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)

\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)

+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)

                     \(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)

                      \(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)

+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)

     \(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)

     .....................................

     \(1=1\)

\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)

\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

Bình luận (0)
PO
Xem chi tiết
NT
Xem chi tiết
H24
10 tháng 4 2022 lúc 15:34

A>B do A>4 cònB<4

Bình luận (1)
TL
28 tháng 11 2024 lúc 22:49

Con ngu

 

Bình luận (0)
HN
Xem chi tiết