Những câu hỏi liên quan
NL
Xem chi tiết
NT
10 tháng 3 2021 lúc 12:59

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 3 2021 lúc 20:03

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

Bình luận (0)
 Khách vãng lai đã xóa
TA
30 tháng 3 2021 lúc 19:20
a=(a+y)(y+a)=a+a-a
Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
TC
Xem chi tiết
H24
14 tháng 12 2018 lúc 5:12

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn

Bình luận (0)
HK
Xem chi tiết
KO
1 tháng 1 2016 lúc 10:34

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

Bình luận (0)
LG
Xem chi tiết
NL
Xem chi tiết
PB
Xem chi tiết
CT
15 tháng 7 2019 lúc 16:17

Từ x + y + z = 0 ⇒ x + y = -z; y + z = -x; x + z = -y thay vào M ta được

M = (x + y)(y + z)(x + z) = (-z).(-x).(-y) = -xyz mà xyz = 4 nên M = -4

Vậy xyz = 4 và x + y + z = 0 thì M = -4

Chọn đáp án C

Bình luận (0)
LQ
Xem chi tiết
NP
21 tháng 4 2020 lúc 19:33

TLMJFDLIIS HFIEHFU ưAUDSEIq

Bình luận (0)
 Khách vãng lai đã xóa
PD
21 tháng 4 2020 lúc 19:53

1, Tính giá trị biểu thức sau tại x+y+1=0

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)

Ta có: x + y + 1 = 0 => x + y = -1

(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)

\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)

\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)

\(=\left(y-x\right).\left(-1\right)-x+y+1\)

\(=-y+x-x+y+1\)

\(=1\)

2, Cho xyz=2 và x+y+z=0

Tính giá trị biểu thức

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có: x + y + z = 0

=> x + y = -z (1)

=> y + z = -x (2)

=> x + z = -y (3)

Từ (1);(2);(3) 

=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0

Bình luận (0)
 Khách vãng lai đã xóa
TL
21 tháng 4 2020 lúc 20:10

1, x+y+z=1

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(=\left(x+y\right)\left(x^2-y^2+2\right)+x^2-y^2+3\)

\(=\left(x+y\right)\left(x^2-y^2+2\right)+\left(x^2-y^2+2\right)+1\)

\(=\left(x^2-y^2+2\right)\left(x+y+1\right)+1\)

=1 (vì x+y+1=0)

2, x+y+z=0 <=> \(\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}}\)

Nhân theo vế ta được: xyz=\(-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

=> (x+y)(y+z)(z+x)=-2

Bình luận (0)
 Khách vãng lai đã xóa
HC
Xem chi tiết
DD
8 tháng 5 2016 lúc 21:34

Áp dụng bất đẳng thức Cô - si, ta có :

   \(P\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(\Rightarrow P\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\)  (1)

Lại theo bất đẳng thức Cô si thì :

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt[3]{\sqrt{\frac{27}{\left(xyz\right)^2}}}\)    (2)

Vì \(xyz=1\) nên ta có :

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt{3}\)

Khi \(x=y=z=1\Rightarrow P=3\sqrt{3}\)

Vậy giá trị nhỏ nhất của \(P=3\sqrt{3}\)

 

Bình luận (0)