Những câu hỏi liên quan
ND
Xem chi tiết
XO
29 tháng 6 2023 lúc 21:42

Ta có : \(x^4+2x^3-10x^2+10x-3=y^2\)

\(\Leftrightarrow\left(x^4+2x^3-3\right)-\left(10x^2-10x\right)=y^2\)

\(\Leftrightarrow\left(x-1\right).\left(x^3+3x^2-7x+3\right)=y^2\)

\(\Leftrightarrow\left(x-1\right)^2.\left(x^2+4x-3\right)=y^2\)

Vì \(x,y\inℤ\) nên y2 là số chính phương khi 

x2 + 4x - 3 là số chính phương

Đặt x2 + 4x - 3 = t2

\(\Leftrightarrow\left(x+t+2\right).\left(x-t+2\right)=7\)

Ta có bảng 

x + t + 2 1 7 -1 -7
x - t + 2 7 1 -7 -1
x 2 2 -6 -6
t -3 3 3 -3

Ta được x = 2 ; x = -6 thỏa 

Với x = 2 <=> y = \(\pm3\)

Với x = -6 <=> y = \(\pm21\)

Bình luận (0)
H24
Xem chi tiết
NL
Xem chi tiết
AO
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Bình luận (0)
NL
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Bình luận (0)
NC
Xem chi tiết
H24
15 tháng 6 2019 lúc 9:25

#)Giải :

VD1:

Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :

\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )

\(\Rightarrow-1\le x\le0\)

Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)

Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)

Vậy...........................

Bình luận (0)
H24
15 tháng 6 2019 lúc 9:33

#)Giải :

VD2:

\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)

\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)

\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)

Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)

Do đó \(y^4=\left(x^2+y^2+1\right)^2\)

Thay vào phương trình, ta suy ra được \(x=z=0\)

\(\Rightarrow y=\pm1\)

Bình luận (0)
DH
15 tháng 6 2019 lúc 9:47

VD1:

Với x=-1 thì y=0.

Với x>0 thì \(x^3< 1+x+x^2+x^3< x^3+3x^2+3x+1.\)

\(\Leftrightarrow x^3< y^3< \left(x+1\right)^3.\), Điều này vô lí .

Với x<-1 thì \(x^3+3x^2+3x+1< 1+x+x^2+x^3< x^3\)

\(\Leftrightarrow\left(x+1\right)^3< y^3< x^3\),Điều này vô lí.

Vậy phương trình đã cho có 2 nghiệm nguyên \(\left(x,y\right)\)là \(\left(0;1\right),\left(-1;0\right).\)

VD2:

Chuyển vế ta có:

\(y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1.\)

Nếu \(x\ne0\)hoặc \(z\ne0\)thì

\(x^4+1^4+z^4+2x^2z^2+2z^2+2x^2< x^4+z^4+2x^2z^2+3x^2+4z^2+1< x^4+y^4+2^4+2x^2y^2+\)

            \(4x^2+4z^2\)

\(\Leftrightarrow\left(x^2+z^2+1\right)^2< y^4< \left(x^2+y^2+2\right)^2\). Điều này vô lí với y nguyên

Với \(x=z=0\Rightarrow y^4=1\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

Do đó phương trình đã cho có các nghiệm nguyên (x, y, z) là ( 0;1;0) ,( 0;-1;0)

Bình luận (0)
MT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
PP
Xem chi tiết
TP
26 tháng 8 2020 lúc 20:25

\(x^4+2x^3+3x^2+2x=y^2-y\)

\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)

\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)

Đến đây chắc khó.

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
Xem chi tiết