Tính \(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
Tính x=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(x=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(x=\frac{1.3}{2.2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+...+\frac{99.101}{100.100}\)
\(x=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(x=\frac{1}{100}.\frac{101}{2}\)
\(x=\frac{101}{200}\)
\(X=\frac{1.3}{2.2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+...+\frac{99.101}{100.100}\)
\(X=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4....100}\)
\(X=\frac{1}{100}.\frac{101}{2}\)
\(X=\frac{101}{200}\)
Study well
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}=\frac{3.8.15....9999}{4.9.16....10000}=?\)
Tính P= \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}..........\frac{9999}{10000}\)
P=1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... . 99.101/100.100
P=1.2.3....99/2.3.4...100 . 3.4.5...101/2.3.4...100
P=1/100 . 101/2
P=101/200
P = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
P = \(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)
P = \(\frac{1}{100}.\frac{101}{2}\)
P = \(\frac{101}{200}\)
Tính A = \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...........\frac{9999}{10000}\)
giúp mk với
\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)
= \(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)
= \(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)* \(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)
= \(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)
Ta có: A = \(\frac{3}{8}\). \(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\). \(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)= \(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).
\(A=\frac{\left(1\cdot3\right)\cdot\left(2\cdot4\right)\cdot\left(3\cdot5\right)\cdot.....\cdot\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right).......\left(100\cdot100\right)}\)
\(A=\frac{\left(1\cdot2\cdot3\cdot.....\cdot99\right)\left(3\cdot4\cdot5\cdot.....\cdot101\right)}{\left(2\cdot3\cdot4\cdot.....\cdot100\right)\left(2\cdot3\cdot4\cdot.....\cdot100\right)}\)
\(A=\frac{1\cdot101}{100\cdot2}\)
\(A=\frac{101}{200}\)
k mk nha mk nhanh nhất mk trả lời đúng 100%
B=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{9999}{10000}\)
Tính B
Cho A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
Tính 200.A
A=1.3/2^2.2.4/3^2.3.5/4^2...99.101/100.100
A=(1.2.3...99/2.3.4...100).(3.4.5...101/2.3.4...100)
A=1/100.101/2
A=101/200
200.A=200.101/200
200.A=101
\(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x.......x\frac{9999}{10000}\)
\(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.....\frac{99.101}{100^2}\)
\(=\frac{1.3.2.4.3.5.....99.101}{2.2.3.3.4.4.....100.100}\)
\(=\frac{1.2.3.....99}{2.3.4.....100}.\frac{3.4.5.....101}{2.3.4.....100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
Ủng hộ mk nha,chúc bn học tốt!!!
bn ơi mjk chưa học số có mũ bn giúp mjk nốt nha
C=\(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x.......x\frac{9999}{10000}\)
\(C=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)
\(C=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{99\cdot101}{100\cdot100}\)
\(C=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)
\(C=\frac{1}{100}\cdot\frac{101}{2}\)
\(C=\frac{101}{200}\)
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x......x\frac{9999}{10000}\)
\(C=\frac{1.3}{2^2}x\frac{2.4}{3^2}x\frac{3.5}{4^2}x....x\frac{99.101}{100^2}\)
\(C=\frac{1.3.2.4.3.5.......99.101}{2^2.3^2.4^2.......100^2}\)
\(C=\frac{1.2.3.......99}{2.3.4....100}x\frac{3.4.5.....101}{2.3.4......100}\)
\(C=\frac{1}{100}.\frac{101}{2}=\frac{1.101}{100.2}=\frac{101}{200}\)
Ủng hộ mk nha!!!!
\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}..........\frac{9999}{10000}\)