Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DT
Xem chi tiết
TT
Xem chi tiết
DQ
26 tháng 9 2020 lúc 19:12

\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)

\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)

\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)

Dấu '' ='' xảy ra khi và chỉ khi  x=1

=> Min A =2/3 khi x=1

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NC
3 tháng 6 2019 lúc 13:46

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

Bình luận (0)
DT
Xem chi tiết
HA
Xem chi tiết
ZZ
10 tháng 5 2019 lúc 20:09

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
NC
26 tháng 5 2019 lúc 21:52

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18

Bình luận (0)
HN
Xem chi tiết
LS
Xem chi tiết
CD
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

Bình luận (0)
H24
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
LS
Xem chi tiết