\(CMR:A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{n}\left(n\in N;n\ge2\right)\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{n+1}\right)\left(n\in N\right)\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+.......+\frac{1}{20}\left(1+2+3+4....+20\right)\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)
\(CMR:A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\notinℕ\)
Tổng trên có số số hạng là: \(\left(n-2\right):1+1=n-1\) số hạng
Suy ra \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\)
\(=\frac{\left(\frac{1}{n}+\frac{1}{2}\right)\left(n-1\right)}{2}=\frac{\frac{1}{n}\left(n-1\right)+\frac{1}{2}\left(n-1\right)}{2}\)
\(=\frac{1-\frac{1}{n}+\frac{n}{2}-\frac{1}{2}}{2}=\frac{\frac{1}{2}-\left(\frac{1}{n}-\frac{n}{2}\right)}{2}\)
\(=\frac{\left(\frac{1}{2}\right)}{2}-\frac{\left(\frac{2}{2n}\right)}{2}+\frac{\left(\frac{n^2}{2n}\right)}{2}=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}\)
Suy ra \(n\ne0\).Ta có: \(S=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}=\frac{1+n}{4}-\frac{1}{2n}\)
\(=\frac{2n^2+2n+4}{8n}=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{\left(\frac{7}{2}\right)}{8n}\)
\(=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{7}{16n}\)
Đến đây bí =)Alibaba!
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
1.Tính:
a,\(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-......-\frac{1}{\left(n-1\right).n}\)\(n\in N\)
b,\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-....-\frac{4}{\left(n-4\right).n}\)\(n\in N\)
c\(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-.....-\frac{1}{2^{10}}\)
1 Tính :
a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)
\(=\frac{1}{n}\)
b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow C=1-B\left(1\right)\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
Lấy 2B trừ B ta có :
\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(B=1-\frac{1}{2^{10}}\left(2\right)\)
Thay (2) vào (1) ta có :
\(C=1-\left(1-\frac{1}{10}\right)\)
\(=1-1+\frac{1}{10}\)
\(=\frac{1}{10}\)
Vậy \(C=\frac{1}{10}\)
Chứng minh rằng:
a)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\)<1
b)\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)<2
c)\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)<\(\frac{3}{4}\)
d)\(\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+...+\frac{1}{n^3}\)<\(\frac{1}{12}\)\(\left(n\in N;n\ge3\right)\)
e)\(\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)<1 (n nguyên dương)
g)\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2048}\)>3
h)\(\left(\frac{2}{1}\right)\left(\frac{4}{3}\right)\left(\frac{6}{5}\right)...\left(\frac{200}{199}\right)\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Bài 2
a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
b) \(B=\left(-1\frac{1}{2^2}\right)\left(-1\frac{1}{3^2}\right)\left(-1\frac{1}{4^2}\right)...\left(-1\frac{1}{2003^2}\right)\left(-1\frac{1}{2004^2}\right)\)
c) \(C=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\left(n\in N,n\ge2\right)\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...
\(M=\frac{1}{2_{^{^2}}}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\left(n\in N\right);n\ge2\)
\(M=\frac{1}{2_{^{^2}}}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
=\(1-\frac{1}{n}<1\)
\(\Rightarrow M<1\)