Tính nhanh:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\)
Tính nhanh
\(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{99}-\frac{1}{100}\)
( 1/100-1/2) : 1/6 + 1=-97/50
(1/100+1/2)*97/50:2=-51/388
Tính nhanh:
\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}=\)
Ta có : \(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(A=3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+100}\right)\)
Mà \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+100}=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)=2\left(1-\frac{1}{101}\right)=\frac{200}{101}\)
\(\Rightarrow A=3.\frac{200}{101}=\frac{600}{101}\)
Tính \(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{99.1}}\)
Tính \(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
6 ở đâu hả https://olm.vn/thanhvien/aihaibara0
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+...+100}\)
Tính A
Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!
Theo mình thì đề phải là \(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+...+100}\).
Ta có :
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+...+100}\)
\(=>A=3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\right)\)
Đặt \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\) là B. Ta có :
\(B=\)\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\)
\(=>B=\frac{1}{1}+\frac{1}{\left(1+2\right)\cdot2:2}+\frac{1}{\left(1+3\right)\cdot3:2}+\frac{1}{\left(1+4\right)\cdot4:2}+...+\frac{1}{\left(1+100\right)\cdot100:2}\)
\(=>B=\frac{1}{1}+\frac{1}{3\cdot2:2}+\frac{1}{4\cdot3:2}+\frac{1}{5\cdot4:2}+...+\frac{1}{101\cdot100:2}\)
\(=>B=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{100\cdot101}\)
\(=>B=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{100\cdot101}\right)\)
\(=>B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=>B=2\left(1-\frac{1}{101}\right)\)
\(=>B=2\cdot\frac{100}{101}=\frac{200}{101}\)
\(=>A=3B=3\cdot\frac{200}{101}=\frac{600}{101}\)
Chúc bạn học tốt!
TÍNH NHANH:
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
\(D=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{100^2}\right).\)
\(D=-\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\frac{4^2-1}{4^2}\cdot...\cdot\frac{100^2-1}{100^2}.\)
\(D=-\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot...\cdot\frac{98\cdot100}{99^2}\cdot\frac{99\cdot101}{100^2}=-\frac{1}{2}\cdot\frac{101}{100}=-\frac{101}{200}\)
Tính:
\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{100}\left(1+2+3+...+100\right)\)
tính nhanh
A= \(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+......+\frac{3}{1+2+3+4+.....+100}\)
bạn giải giúp mk bài này nhé
cầu xin bạn tại mk đang cần gấp huhuhu
tinh nhanh
A=\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....+\frac{3}{1+2+3+.....+100}\)
\(A=\frac{3}{1}+\frac{3}{\frac{\left(2+1\right).2}{2}}+\frac{3}{\frac{\left(3+1\right).3}{2}}+....+\frac{3}{\frac{\left(100+1\right).100}{2}}\)
\(\Rightarrow A=\frac{3}{1}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{3}{1}+\frac{6.99}{202}=\frac{297}{101}+\frac{3}{1}=\frac{600}{101}\)
kết quả k bik có sai k
CMR:
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+..+\frac{99}{100}\)
b, \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{200}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Giải nhanh giùm mình nhé!!!!!!!!!!!!!!
a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)
\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)
b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
= \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ...
a) \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(100=\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(100=1+1+1+...+1\)
\(\Rightarrow100=100\)
b) \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)