Những câu hỏi liên quan
AF
Xem chi tiết
H24
Xem chi tiết
BP
Xem chi tiết
PK
Xem chi tiết
PK
Xem chi tiết
DA
Xem chi tiết
TD
20 tháng 5 2018 lúc 14:45

Câu hỏi của An Thi Yen Nhi - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
HN
Xem chi tiết
ZZ
24 tháng 7 2020 lúc 22:11

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
VH
Xem chi tiết