Nếu x+y+z=0 và xyz khác 0. Tính GTBT : A=x^2/yz+y^2/zx+z^2/yx
các bn giúp mk nha.
Cho xy - yz - zx = 0 và xyz khác 0. Tính giá trị biểu thức B = yz/x^2 - zx/y^2 - xy/z^2 .
Lời giải:
\(yz-xz-xy=0\Rightarrow yz-xz=xy\)
\(B=\frac{yz}{x^2}-\frac{zx}{y^2}-\frac{xy}{z^2}\)\(=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}\)
Xét: \((yz)^3-(xz)^3-(xy)^3=(yz-xz)^3+3yz.xz(yz-xz)-(xy)^3\)
\(=(xy)^3+3yz.xz.xy-(xy)^3=3x^2y^2z^2\)
\(\Rightarrow B=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
cho x,yz khác 0 thỏa mãn \(\frac{xy}{x+y}\)=\(\frac{yz}{y+z}\)=\(\frac{zx}{z+x}\)
Tính giá trị của P=\(\frac{20xy+4yz+2013zx}{x^2+y^2+z^2}\)
GIÚP EM NHA CÁC ANH CHỊ
Từ \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\)
\(\Rightarrow\frac{x}{xy}+\frac{y}{xy}=\frac{y}{yz}+\frac{z}{yz}=\frac{x}{xz}+\frac{z}{xz}\)
\(\Rightarrow\frac{1}{y}+\frac{1}{x}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\).Khi đó
\(P=\frac{20xy+4yz+2013xz}{x^2+y^2+z^2}=\frac{20x^2+4x^2+2013x^2}{x^2+x^2+x^2}=\frac{2037x^2}{3x^2}=679\)
cho x,y>0 thỏa mãn \(^{x^2+y^2-xy=8}\)
tìm GTNN và GTNN của biểu thức M=\(^{x^2+y^2}\)
cho x/(y+z) + y/(z+x) + z(x+y)=1. tính GTBT x^2/(y+z) + y^2/(z+x) + z^2/(x+y).
huhu các bn giúp mk vs nek
\(\frac{x}{y+z}=1-\left(\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(=1-\frac{xy+y^2+xz+z^2}{\left(x+z\right)\left(x+y\right)}\) \(=\frac{x^2+xy+xz+yz-xy-y^2-xz-z^2}{\left(x+z\right)\left(x+y\right)}\)
\(=\frac{x^2+yz-y^2-z^2}{\left(x+y\right)\left(x+z\right)}=\frac{\left(x^2+yz-y^2-z^2\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
\(=\frac{x^2y+x^2z-y^3-z^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(\Rightarrow\frac{x^2}{y+z}=\frac{x^3y+x^3z-xy^3-xz^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
+ CM tương tự rồi công vế theo vế ta đc
BT = 0
cho x,y,z>0 và xyz=1. cmr x/(xy+x+1)^2+y/(yz+y+1)^2+z/(zx+z+1)^2 >= 1/x+y+z
Cho x^2+y^2+z^2=19 và 17(xy+yz+zx)=105. Tính x+y+z =? (x,y,z>0) .......... cảm ơn ....^^
Vì \(17.\left(xy+yz+zx\right)=105\Rightarrow\left(xy+yz+zx\right)=\frac{105}{17}\)
Ta có :
\(\left(x+z+y\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=19+2\left(\frac{105}{17}\right)=31\frac{6}{17}\)
Do đó : \(x+y+z=\sqrt{31\frac{6}{17}}\)
hoặc \(x+y+z=-\sqrt{31\frac{6}{17}}\)
Chúc bạn học tốt nha !!!
Bài 6: Tính GTBT (x+2xy+1)/(x+xy+xz+1)+(y+2yz+1)/(y+yz+yx+1) +(z+2zx+1)/(z+zx+zy+1) biết xyz=1
có ai giúp mk giải bài này với
mk cảm ơn nhiều
Cho x,y,z là các số khác 0 và x2=yz,y2=xz,z2=xy. Chứng minh x=y=z
1.GTNN của biểu thức \(x^2-2xy+2y^2+2x-6y+10\)
2.Nếu x + y + z = 0 và xyz khác 0 thì gtbt của A\(=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}\)
1)
\(A=\left(x-y+1\right)^2+\left(y-2\right)^2+5\ge5\)
GTNN A=5 khi y=2 và x=1
2)
\(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)
Các cậu giúp mình nhé, mình sắp thi huyện rồi :
Câu 1 : Giá trị nhỏ nhất của biểu thức :
A = -x ^ 2 - 2x - 5 / x ^ 2 + 2x +2 là
Câu 2 : Cho x,y,z khác 0 và x - y - z = 0
Tính giá trị biểu thức :
B = ( 1 - z / x ) ( 1 - x/y) ( 1 + y/2 )
Câu 2 : Tìm x,y,z biết :
x - 1 / 2 = y- 2 / 3 = z - 3 /4 và 2x + 3y -z =50
Câu 3 : Tìm x,y biết :
x / y ^2 = 3 và x/ y =27
Xin lỗi! Mình mới học lớp 5 thôi à!