Những câu hỏi liên quan
NH
Xem chi tiết
H24
19 tháng 5 2019 lúc 16:34

Ta có:

      \(x^2-2y^2-xy=0\)

       <=>\(\left(x^2-y^2\right)-\left(y^2-xy\right)=0\)

       <=>\(\left(x-y\right)\left(x-y\right)-y\left(x+y\right)=0\)

       <=> \(\left(x-y\right)\left(x-2y\right)=0\)

       <=> x - 2y = 0 ( do x+y khác 0 )

       <=> x =2y

Thay  vào đề bài ta có

Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Bình luận (0)
H24
19 tháng 5 2019 lúc 18:58

Từ \(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\)

\(\Rightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

\(\Rightarrow\left(x-y\right).\left(x-y\right)-y.\left(x-y\right)=0\)

\(\Rightarrow\left(x-y\right).\left(x-2y\right)=0\)

\(\Rightarrow x=2y\)

Thay vào đã dc:\(Q=\frac{1}{3}\)

Bình luận (0)
SH
Xem chi tiết
DT
Xem chi tiết
VT
8 tháng 7 2016 lúc 10:14

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)

\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)

\(P=\frac{1}{2y-x}\)

Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)

 

Bình luận (2)
VT
Xem chi tiết
BT
8 tháng 7 2016 lúc 11:55

Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)

      \(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

    \(C=\frac{x+1}{2x^2+y+2}\)

Ta có: 

A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

=>\(P=\left(A:B\right):C\)

       \(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

       \(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)

        \(=\frac{1}{2y-x}\)

=>\(P=\frac{1}{2y-x}\)

Thế x=-1,76 và y=3/25 vào P

=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)

Bình luận (0)
ND
Xem chi tiết
SV
22 tháng 12 2014 lúc 20:46

\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)

\(\Rightarrow x=2y\)

Thay vào A tính đc giá trị của A

Bình luận (0)
NH
Xem chi tiết
H24
5 tháng 1 2018 lúc 20:04

chs bb ak

Bình luận (0)
H24

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Bình luận (0)
H24
2 tháng 8 2019 lúc 8:28

Đặc P ta có

P= x2 - 2y2 =xy

<=> x2 - y2 - y2 -xy =0

=> (x-1) (x+y) -y (x+y) -1

=> (x+y_(x-2y)=0

Vậy 

x+y #0

=> x- 2y =0

=>x=2y

=>P=2y -y trên 2y + y =y trên 3y =1/3

Bình luận (0)
TP
Xem chi tiết
DH
18 tháng 7 2018 lúc 16:46

Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)

Bình luận (0)
TD
18 tháng 7 2018 lúc 17:00

Vì \(x^2-2y^2=xy\) 

\(\Leftrightarrow x^2-xy-y^2=0\)

\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Theo đề bài thì có : 

\(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Leftrightarrow x=2y\)

Từ đó ta lại có :

\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy .......

Bình luận (0)
VH
18 tháng 7 2018 lúc 16:52

ta có 

          x2-2y2=xy

<=>  x2 -xy -2y2 =0

<=> (x-2y)(x+y)=0

=>\(\orbr{\begin{cases}x=2y\\x+y=0\left(loại\right)\end{cases}}\)

nếu x=2y thì P=1/3

Bình luận (0)
NT
Xem chi tiết
MT
Xem chi tiết