Những câu hỏi liên quan
BD
Xem chi tiết
LA
13 tháng 5 2024 lúc 21:17

Tử  :Vì a là stn khác 0 => trong 2 số a và a+1 có 1 số chẵn => a (a+1) là số chẵn =>a (a+1) + 2024 là số chẵn  =>  a(a+1) + 2024  chia hết cho 2
Mẫu :+)Nếu b+c chẵn thì bc(b+c) chẵn => bc(b+c) chia hết cho 2
         +)Nếu b+c lẻ thì trong 2 số b và c có  1 số chẵn và 1 số lẻ=> bc(b+c) chẵn =>bc(b+c) chia hết cho 2
 Vì cả tử và mẫu đều chia hết cho 2 => phân số đó chưa tối giản

Bình luận (0)
H24
Xem chi tiết
DV
12 tháng 3 2017 lúc 8:29

Gọi ƯCLN(a,b)=d (d khác 0,-1,1)

=>\(a⋮d\)

\(b⋮d\)

Sử dụng tính chất chia hết của 1 tổng, ta được:

\(\left(a+b\right)⋮d\)

Mà \(b⋮d\)

nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.

Vậy phân số trên chưa tối giản.

Bình luận (0)
RR
Xem chi tiết
CH
6 tháng 2 2018 lúc 11:22

Bài 1:

Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)

Khi đó ta có:

a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản  (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản   (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

Bình luận (0)
NN
Xem chi tiết
KF
2 tháng 5 2015 lúc 9:30

Câu a: Không hỏi nên không trả lời

Câu b:Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 là phân số tối giản

Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì: \(1-\frac{1}{50}\)<\(1\)

Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)

 

Bình luận (0)
ND
Xem chi tiết
DT
Xem chi tiết
DT
10 tháng 2 2019 lúc 15:42

giúp mình vs nha

Bình luận (0)
TL
Xem chi tiết
DN
Xem chi tiết
NM
Xem chi tiết