Tính tổng :
\(\frac{2019}{210}+\frac{2019}{280}+\frac{2019}{360}+\frac{2019}{450}+\frac{2019}{550}\)
Tính B
B=\(\frac{1}{2019}+\frac{2}{2019}+\frac{3}{2019}+\frac{4}{2019}+...+\frac{2019}{2019}\)
\(B=\frac{1}{2019}+\frac{2}{2019}+\frac{3}{2019}+...+\frac{2019}{2019}\)
\(=\frac{1+2+3+...+2019}{2019}\)
\(=\frac{\left(2019+1\right).\left[\left(2019-1\right)+1\right]:2}{2019}\)
\(=\frac{2039190}{2019}\)
\(=1010\)
#)Giải :
\(B=\frac{1}{2019}+\frac{2}{2019}+\frac{3}{2019}+...+\frac{2019}{2019}\)
\(B=\frac{1+2+3+...+2018+2019}{2019}\)
\(B=\frac{\frac{\left(2019+1\right)\times2019}{2}}{2019}\)
\(B=\frac{2039190}{2019}\)
\(B=\frac{1}{2019}+\frac{2}{2019}+\frac{3}{2019}+\frac{4}{2019}+...+\frac{2019}{2019}\)
\(B=\frac{1+2+3+4+...+2019}{2019}\)
\(B=\frac{\frac{\left(2019+1\right)\times2019}{2}}{2019}\)
\(B=\frac{2039190}{2019}\)
\(B=1010\)
So sánh \(A=\frac{2^{2019}}{2^{2019}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2019}}+\frac{5^{2019}}{5^{2019}+2^{2019}}\)với \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
Tham khảo
https://hoc24.vn/hoi-dap/question/814814.html
B=11.2+13.4+15.6+....+12019.2020
⇒2B=21.2+23.4+25.6+....+22019.2020
<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020
2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020
2B<1+12−13+13−14+...+12019−12020
2B<1+12−12020<1+12
B<34
---------------------
Đặt 22018=a;32019=b;52020=c(a,b,c>0)
A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1
⇒A>1>34>B
cho các số a,b,c khác 0 sao cho \(a+b=c+\frac{1}{2019}\)và \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\)
tính giá trị của \(P=\left(a^{2019}+b^{2019}-c^{2019}\right)\left(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)\)
\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)
=>a=-b hoặc c=b hoặc a=c
không mất tính tổng quát, giả sử a=-b, ta có:
\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)
tương tư với các trường hợp khác ta cũng có P=1
Vậy P=1
Tính
\(\left(\frac{19}{2018}-2019\right)\cdot\frac{1}{2019}-\left(\frac{1}{2018}-2019\right)\cdot\frac{19}{2019}\)
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
\(\left(\frac{19}{2018}-2019\right).\frac{1}{2019}-\left(\frac{1}{2018}-2019\right).\frac{19}{2019}\)
\(=\frac{19}{2018}-2019.\frac{1}{2019}-\frac{-1}{2018}+2019.\frac{19}{2019}\)
\(=\left(\frac{19}{2018}-\frac{-1}{2018}\right)-\left(2019+2019\right).\left(\frac{1}{2019}.\frac{19}{2019}\right)\)
\(=\frac{18}{2018}-2038.\frac{19}{2019}\)
còn đâu tự tính nha
Cho \(\frac{1}{x}+\frac{1}{Y}+\frac{1}{z}=\frac{1}{x+y+z}\)
cmr: \(\frac{1}{X^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}} \)
cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)CM: \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
=> (x+y+z)(xy+yz+zx) = xyz
=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)
=> (x+y)(y+z)(z+x) = 0
=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: x = -y
=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)
=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)
=> ĐPCM
Tương tự với TH2 và TH3
cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)CM: \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}}\)
Chứng minh nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
thì \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}+y^{2019}+z^{2019}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Nếu
\(x=-y\Rightarrow\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}}-\frac{1}{x^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)
\(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{x^{2019}-x^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)
Tương tự các TH còn lại nha!
P/S:Có 1 bài chặt hơn ntnày:
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.