Những câu hỏi liên quan
H24
Xem chi tiết
HT
Xem chi tiết
NV
Xem chi tiết
H24
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Bình luận (0)
NN
Xem chi tiết
LP
19 tháng 6 2023 lúc 22:18

Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)

Bình luận (0)
CL
19 tháng 6 2023 lúc 21:29

Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:

Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.

Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.

Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:

(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn

Simplifying the equation, we get:

4k^2 - 2020n^2 + 2022 chia hết cho 2kn

Dividing both sides by 2, we have:

2k^2 - 1010n^2 + 1011 chia hết cho kn

Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.

Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.

Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.

Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.

Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.

Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.

Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:

m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)

Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).

Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).

Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.

Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.

Bình luận (0)
NC
Xem chi tiết
MS
2 tháng 3 2019 lúc 5:22

\(n^6-n^4-n^2+1\)

\(=n^4\left(n^2-1\right)-\left(n^2-1\right)=\left(n^4-1\right)\left(n^2-1\right)\)

\(=\left(n^2-1\right)^2\left(n^2+1\right)\)

Thay n=2k+1 vào giải :))

Bình luận (0)
DT
Xem chi tiết
DV
22 tháng 9 2015 lúc 21:41

Bài 1 :

Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ

Bài 2 :

Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn 

Bình luận (0)
TH
Xem chi tiết
NN
3 tháng 11 2024 lúc 9:09

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

Bình luận (0)
NN
3 tháng 11 2024 lúc 9:10

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$

Bình luận (0)
TH
Xem chi tiết
LD
Xem chi tiết
H24
30 tháng 4 2016 lúc 8:11

Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1

Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)

a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.

b)  Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm

Bình luận (0)
LD
30 tháng 4 2016 lúc 8:10

Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1

Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)

a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.

b)  Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm

Ai tích mk mk sẽ tích lại 

Bình luận (0)
ST
30 tháng 4 2016 lúc 8:13

Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1

Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)

a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.

b)  Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm

Bình luận (0)