Những câu hỏi liên quan
LL
Xem chi tiết
NT
1 tháng 3 2015 lúc 13:16

Xét 2 trường hợp n chẵn và n lẻ sau đây:

A) Nếu n là số lẻ thì tích n số tự nhiên bằng lẻ nên tất cả các số trong n đều là số lẻ, tổng của n số lẻ là một số lẻ mà theo đề bài, tổng của n số là 2012 ( loại trường hợp này)

B) Nếu n là số chẵn thì tích n số tự nhiên là một số chẵn nên trong n phải ít nhất có một số chẵn. Xét 2 khả năng sau:

 + Nếu trong n chỉ có 1 số chẵn thì (n-1) còn lại đều là các số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012( loại khả năng này)

+Nếu trong n có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên n chia hết cho 4. 

Bình luận (0)
TA
Xem chi tiết
TA
7 tháng 6 2023 lúc 15:10

giúp tui

 

 

Bình luận (0)
PT
7 tháng 6 2023 lúc 15:19

Theo 2 trường hợp:

TH1 : n là số lẻ

=> tích của n số là số lẻ nên các số trong n số đều lẻ

vậy tổng n số tự nhiên là số lẻ, mà theo đề bài tổng n số này là chẵn  => loại .

TH2 : n là số chẵn

=>  tích của n số này là chẵn nên trong n số phải có ít nhất 1 số chẵn

,  Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ

=> Tổng các số là lẻ ( loại )

+, Nếu trong n số có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4

   Theo đề bài trên : tích của n số tự nhiên bằng n

    Vậy n chia hết cho 4

Bình luận (0)
HL
Xem chi tiết
HL
21 tháng 5 2019 lúc 21:42

Xét hai trường hợp n chẵn và n lẻ sau đâu:

a)    Nếu n là số lẻ thì do tích n số tự nhiên bằng n lẻ nên tất cả n số đều là các số lẻ, và tổng của n số lẻ là một số lẻ nên không thể bằng 2012 (loại trường hợp này)

b)   Nếu n là số chẵn thì do tích n số tự nhiên bằng n nên trong n số đã cho có ít nhất 1 số chẵn. Xét hai khả năng sau đây:

+) Nếu trong n số chỉ có đúng một số chẵn, thì (n – 1) số còn lại đều là các số lẻ, khi đó tổng của (n – 1) số lẻ là một số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012 (loại khả năng này).

+) Nếu trong n số có ít nhất 2 số chẵn thì tích cỉa 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên suy ra chia hết cho 4.

Bình luận (0)
NC
21 tháng 5 2019 lúc 21:47

  Xét 2 trường hợp:

TH1: Nếu n là số lẻ thì tích của n số là số lẻ nên các số trong n số đều lẻ

                => Tổng n số tự nhiên này là số lẻ

         Mà theo đề bài tổng n số này là chẵn  => loại 

TH2: Nếu n là số chẵn thì tích của n số này là chẵn nên trong n số phải có ít nhất 1 số chẵn

+,  Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ => Tổng các số là lẻ ( loại )

+, Nếu trong n số có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4

   Theo giả thiết: tích của n số tự nhiên bằng n

         => n chia hết cho 4

Bình luận (0)
NT
Xem chi tiết
TT
Xem chi tiết
PK
24 tháng 11 2016 lúc 22:00

Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )

a) n+3 : n-2

=> n+3 : n+3-5 

=> n+3 : 5 ( Vì n+3 : n+3 )

=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!

b) 2n+9 : n-3

=> n + n + 11 - 3 : n-3 

=> n + 11 : n-3

=> n + 14 - 3 : n-3

=> 14 : n - 3 ( Vì n - 3 : n-3 )

=> n-3 là Ư(14) => Tự làm tiếp

c) + d) thì bạn tự làm nhé!

-> Chúc bạn học giỏi :))

Bình luận (0)
BB
Xem chi tiết
H24
8 tháng 6 2019 lúc 8:54

#)Giải :

Bài 3 :

Ta xét các trường hợp: 

TH1 : Nếu n là số lẻ :

=> Tích của n số là số lẻ => các chữ số của n đều là số lẻ 

=> Tổng n số tự nhiên này là số lẻ 

Vì theo đề bài tổng n số này là số chẵn => loại 

TH2 : Nếu n là số chẵn :

=> Tích của n số là số chẵn => Trong n số có ít nhất một số chẵn :

+) Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ => loại 

+) Nếu trong n số có ít nhất 2 số chẵn => Tích hai số này chia hết cho 4

Theo đề bài : Tích của n số tự nhiên bằng n 

=> n chia hết cho 4 ( đpcm )

Bình luận (0)
DL
Xem chi tiết
DC
2 tháng 2 2015 lúc 10:14

3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9

mà 2n-n=n=>n chia hết cho 9 => đpcm

Bình luận (0)
RD
16 tháng 1 2017 lúc 14:40

câu 1 bạn châu sai rồi

Bình luận (0)
GL
Xem chi tiết
NP
1 tháng 1 2022 lúc 20:57

sao mà tham lam thế

Bình luận (0)
 Khách vãng lai đã xóa
HK
Xem chi tiết