Cho 10a+b chia hết cho 17. chứng minh rằng 3a+2b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
51a:17
=> 51a-a+5b:17
=> 50a+5b:17
=> 5(10a+b):17
=> 10a+b:17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
Cho 3a+2b chia hết cho 17. Chứng minh rằng: 10a+b chia hết cho 17
(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
= 17a
Vì 17chia hết cho17=> 17a chia hết cho 17
=> 2.(10a+b)- (3a +2b) chia hết cho 17
Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
Mà (2,17) =1=> 10a+b chia hết cho 17
Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17
Vậy số đó chia hết cho 17
k cho mk nha
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Cho 3a + 2b chia hết cho 17. Chứng minh rằng 10a + b chia hết cho 17
Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
= 17a
Vì 17chia hết cho17=> 17a chia hết cho 17
=> 2.(10a+b)- (3a +2b) chia hết cho 17
Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
Mà (2,17) =1=> 10a+b chia hết cho 17
Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17
cho 3a + 2b chia het cho 17 chung minyh rang 10a + b chia het cho 17
Ta có: 3a+2b chia hết cho 17
17a chia hết cho 17
Suy ra: 17a + 3a+ 2b chia hết cho 17
Suy ra: (17a + 3a) + 2b chia hết cho 17
Suy ra:20a + 2b chia hết cho 17
Suy ra:(20a + 2b)chia 2 sẽ chia hết cho 17
Suy ra:10a +b chia hết cho 17
Vậy 10a + b chia hết cho 17
Chứng minh rằng:
a) Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
b) Nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
cho 3a+2b chia hết cho 17. Chứng minh rằng 10a+b cũng chia hết cho 17
Gọi 3a+2b=x;10a+b=y
2y=2(10a+b)=20a+2b
2y-x=(20a+2b)-(3a+2b)=17a chia hết cho 17 mà 3a+2b chia hết cho 17
=>20a+2b chia hết cho 17
=>10a+b chia hết cho 17
tick nha
Cho a,b thuoc .Chứng minh rằng:
1)3a+2b chia hết cho 17<=>10a+b chia hết cho 17
2)a-5b chia hết cho 17<=>10a+b chia hết cho 17
cho 3a+2b chia hết cho 17(a,b thuộc N).Chứng minh rằng:10a+b chia hết cho 17
Ta có: 17a chia hết cho 17
suy ra :17a+3a+b chia hết cho 17
suy ra :20a+2b chia hết cho 17
rút gọn cho 2
suy ra :10a+b a hết cho 17
Cho 3a +2b chia hết cho 17(a,b thuộc N ). Chứng minh rằng :10a+b chia hết cho 17
do 3a+2b⋮⋮17
\Rightarrow⇒8(3a+2b)⋮⋮17
Ta có 8(3a+2b)+10a+b
=24a+16b+10a+b
=34a+17b
17(2a+b)⋮⋮17
vậy 8(3a+2b)+10a+b ⋮⋮17
mà 8(3a+2b)⋮⋮17 (\forall∀a,b\in∈N)
nên 10a+b⋮⋮17
\(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)
Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)
\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)
\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)