Cho các số thức x, y thỏa mãn: \(x^2-y^2+xy-x+y+1=0\)
Tính \(x^{2003}-y^{2003}+2013^{x+y}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho ba số x, y, z thỏa mãn các điều kiện x+ y+ z=0 và xy+ yz+ zx = 0
Tính giá trị của biểu thức sau : P = (x - 1)2003 + y2004 + (z + 1)2005
\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)
\(\Rightarrow x^2+y^2+z^2=0\)
\(\Rightarrow x=y=z=0\)
\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)
cho x,y,a,b là số thực thỏa mãn x^2 + y^2 =1 . C/m : x^2006/a^2003 + y^2006/b^2003 = 2/(a+b)^2003
Cho các số dương \(x,y,z\) thỏa mãn điều kiện \(xy+yz+zx=671\). Chứng minh rằng: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)
\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\)
(vì \(2013=3.671=3\left(xy+yz+zx\right)\))
\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)
\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)
\(=\dfrac{1}{x+y+z}\)
ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)
\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)
\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))
Vậy ta có đpcm.
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
Cho x,y là các số nguyên dương thỏa mãn x+y=2003. Tìm giá trị lớn nhất, nhỏ nhất của: P=x (x^2 +y) +y (y^2+x).
giúp mình vs ạ...5* luôn ạ
bài 1: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 2: hai số x và y thỏa mãn các điều kiện x+y=-1 và xy=-12. tính giá trị của các biểu thức sau:
a)A=x^2+2xy+y^2 b) B=x^2+y^2 c)C=x^3+3x^2y+3xy^2+y^3 d) D=x^3+y^3
Cho biểu thức: P = 2/x - (x^2/x^2+xy + y^2-x^2/xy - y^2/xy+y^2).x+y/x^2+xy+y^2 với x khác 0, y khác 0, x khác -y
1) Rút gọn biểu thức P.
2) Tính giá trị của biểu thức P, biết x, y thỏa mãn đẳng thức:
x^2+y^2+10=2(x-3y)
cho 3 số x ,y ,z #0 thõa mãn 1/x + 1/y +1/z=0 . tính : P =(xy/z^2 + yz/x^2 +zx/y^2 -2)^2013
cho các số thực x,y,z thỏa mãn\(\hept{\begin{cases}x+y+z=6\\\left(x-1\right)^3+\left(y-2\right)^3+\left(z-3\right)^3=0\end{cases}}\)
Tính giá trị biểu thức của F=(x-1)2013+(y-2)2013+(z-3)2013