Những câu hỏi liên quan
VA
Xem chi tiết
KB
18 tháng 12 2018 lúc 20:18

ta có 3A = 3/1.4 + 3/4.7 + ... + 3/(3n-2).(3n+1)

3A = 1-1/4 + 1/4 - 1/7 +....+ 1/(3n-2) - 1/(3n+1)

3A = 1- 1/(3n+1) 

Mà 1/(3n+1) > 0 suy ra 3A < 1 suy ra A<1/3

tk giúp mình nha

Bình luận (0)
TD
Xem chi tiết
HT
28 tháng 7 2016 lúc 10:12

Toán lớp 6

Bình luận (0)
DN
Xem chi tiết
KN
Xem chi tiết
HQ
4 tháng 2 2017 lúc 10:39

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

Bình luận (1)
BT
4 tháng 2 2017 lúc 10:41

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Bình luận (3)
DB
4 tháng 5 2019 lúc 13:18

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{1}-\frac{1}{100}\)

=>\(\frac{99}{100}\)

B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

=>\(\frac{1}{1}-\frac{1}{99}\)

=>\(\frac{98}{99}\)

Bình luận (0)
AS
Xem chi tiết
KM
1 tháng 7 2016 lúc 20:58

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)

\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)

\(A=\frac{1}{10}\)

\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)

\(B=\frac{1}{99}-\frac{1}{99}+1\)

\(B=1\)

Bình luận (0)
ND
1 tháng 7 2016 lúc 20:20

sorry nha Thiên Sứ đội lốt Ác Quỷ mk 5 - 6

Bình luận (0)
NT
Xem chi tiết
DH
18 tháng 5 2021 lúc 21:48

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{100}{101}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
18 tháng 5 2021 lúc 21:51

\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)

\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
18 tháng 5 2021 lúc 21:53

\(E=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)

\(3E=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3E-E=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)

\(2E=1-\frac{1}{3^8}\)

\(E=\frac{3^8-1}{2.3^8}\)

\(G=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\)

\(G=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{99}=\frac{1}{99}\)

Bình luận (0)
 Khách vãng lai đã xóa
QO
Xem chi tiết
H24
14 tháng 7 2015 lúc 9:03

a)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=1-\frac{1}{2009}\)

\(=\frac{2008}{2009}\)

b) =\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

=\(\frac{96}{97}\)

Bình luận (0)
ND
14 tháng 7 2015 lúc 9:03

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\) \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2008}-\frac{1}{2009}\)  

= 1 - 1/2009 

= 2008/2009

b) 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/94.97

= 1-  1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/94 - 1/97

= 1 - 1/97

= 96/97

Bình luận (0)
HP
3 tháng 11 2016 lúc 21:42

mình thống nhất là chịu

tk nhé@@@@@@@@@@@@@@@@@@@

hay không 

nếu ban thích

Bình luận (0)
DA
Xem chi tiết
LD
10 tháng 4 2017 lúc 18:39

Ta có : \(\frac{x-1}{2}=\frac{x+1}{3}\)

<=> \(3\left(x-1\right)=2\left(x+1\right)\)

<=> \(3x-3=2x+2\)

<=> \(3x-2x=2+3\)

<=> x = 5 

Bình luận (0)
ST
10 tháng 4 2017 lúc 18:57

a, \(\frac{x-1}{2}=\frac{x+1}{3}\)

=> (x-1)3 = 2(x+1)

=> 3x - 3 = 2x + 2

=> 3x - 2x = 2 + 3

=> x = 5

b, \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\) (ĐPCM)

Bình luận (0)
HC
10 tháng 4 2017 lúc 18:59

a, 3.(x - 1) =2. ( x+ 1) 

<=>3.x-3.1=2.x+2.1

<=>3x-2x=2+3

<=>x=5

b, A= 1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+1/3-...+1/99-1/100

=1-1/100

=99/100

+ Vì 99/100<1 nên =>1/1.2=1/2.3+1/3.4+...+1/99.100

                 Vậy......

Bình luận (0)
TT
Xem chi tiết
TH
15 tháng 3 2016 lúc 21:41

\(D=\frac{\left(-1\right).\left(-1\right)}{1.2}.\frac{\left(-2\right).\left(-2\right)}{2.3}...\frac{\left(-101\right).\left(-101\right)}{101.102}\)

\(=\frac{\left(-1\right)\left(-1\right)\left(-2\right)\left(-2\right)...\left(-101\right)\left(-101\right)}{1.2.2.3...101.102}\)

\(=\frac{\left[\left(-1\right)\left(-2\right)...\left(-101\right)\right].\left[\left(-1\right).\left(-2\right)...\left(-101\right)\right]}{\left(1.2...101\right).\left(2.3...102\right)}\)

\(=\left(-1\right).\frac{-1}{102}\)

\(=\frac{1}{102}\)

Vì \(\frac{1}{102}>\frac{-1}{100}\)

Vậy\(D>\frac{-1}{100}\)

Bình luận (0)