(x +1)+(x+2)+.....+(x+2013)=2013.2014
tìm x biết :(x+1)+(x+2)+........+(x+2013)=2013.2014
Ta có: (x+1)+(x+2)+...+(x+2013)=2013.2014
<=>2013x+2027091=4054182
<=>2013x=2029091
<=>x=1007
(x+1) + (x+2) + ..........+ (x+2013) = 4054182
x+1 + x+2 + ..........+ x+2013 = 4054182
(x+x+x+x+..........+x) + (1+2+3+4+..........+2013) = 4054182
2013x + (1+2013) . 2013 : 2 = 4054182
2013x + 2027091 = 4054182
2013x = 4054182 - 2027091
2013x = 2027091
x = 2027091 : 2013
x = 1007
Thực hiện tính :
a) A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+..+2013)
b) B = 1-3/7.3+2-4/2.4+3-5/3.5+4-6/4.6+....+2011-2013/2011.2013+2012-2014/2012.2014-2013+2014/2013.2014
CMR :1/1.2+1/3.4+...+1/2013.2014=1/1008+1/1009 +........+1/2013+1/2014
tính
A=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+4+...+2013)
B=(1-3)/(1.3)+(2-4)/(2.4)+(3-5)/(3.5)+(4-6)/(4.6)+...+(2011-2013)/(2011.2013)+(2012-2014)/(2012.2014)-(2013+2014)/(2013.2014)
thứ 7 mình nộp ai làm nhanh mình tích cho
nhớ giải chi tiết
CMR: 1/1.2+1/3.4+1/5.6+1/7.8+...+1/2013.2014=1/1008+1/1009+1/1010+...+1/2013+1/2014
Chứng minh rằng
1/1.2 + 1/3.4 + 1/5.6 + 1/7.8 + ... + 1/2013.2014 = 1/1008 + 1/1009 + 1/1010 +...+ 1/2013+ 1/2014
$2015=5.13.31$2015=5.13.31
Ta có: $1.2.....1007=1.2...5....13.....31...1007\text{ chia hết cho }5.13.31=2015$1.2.....1007=1.2...5....13.....31...1007 chia hết cho 5.13.31=2015
$1008.1009.....2004=1008....\left(1010\right)....\left(1014\right)...\left(1023\right)....2004$1008.1009.....2004=1008....(1010)....(1014)...(1023)....2004
$=1008....\left(5.202\right)....\left(13.78\right)....\left(31.33\right)...2004\text{ chia hết cho }5.13.33=2015$=1008....(5.202)....(13.78)....(31.33)...2004 chia hết cho 5.13.33=2015
Do đó tổng 2 số trên chia hết cho 2015.
Tính S= \(\dfrac{\left(x^2+x-3\right)^{2013}}{\left(x^5+x^4-x^3-2\right)^{2013}}+\left(x^5+x^4-x^3+1\right)^{2013}\)
với x=\(\dfrac{\sqrt{5}-1}{2}\)
Cho A = \(1.2.3...2013.2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\). Chứng minh rằng A chia hết cho 2015
2012. 2013 -1 / 2012.2013 và 2013.2014 -1 / 2013. 2014 so sánh
1019 +1 / 1020 +1 và 1020+1/ 1021+1 so sánh
Ta có :
\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)