Những câu hỏi liên quan
PP
Xem chi tiết
H24
11 tháng 7 2018 lúc 20:31

Áp dụng BĐT Svác-xơ ta có:

\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\ge\frac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2017}+\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)

do  \(\frac{2017}{\sqrt{2018}}\ne\frac{2018}{\sqrt{2017}}\)nên dấu "=" không xảy ra

Vậy  \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

Bình luận (0)
NU
Xem chi tiết
VT
7 tháng 8 2017 lúc 18:32

Bằng nhau nha

Bình luận (0)
YF
Xem chi tiết
PN
12 tháng 5 2018 lúc 16:44

Nhỏ hơn 

Bình luận (0)
KT
Xem chi tiết
DH
5 tháng 5 2018 lúc 8:18

Gọi A = 2017/2018 + 2018/2017

         = 2017-1/2018 + 2017+1/2017

         = 1 - 1/2018 + 1 + 1/2017

         = 2 + ( -1/2018 + 1/2017)

 Từ trên => A> 2

K MK NHA . CHÚC BẠN HỌC GIỎI

ĐÚNG 100% NHA

Bình luận (0)
ST
Xem chi tiết
AK
10 tháng 4 2018 lúc 22:16

Ta có : 

\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)

\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow P>Q\)

Chúc bạn học tốt !!! 

Bình luận (0)
NV
10 tháng 4 2018 lúc 22:14

vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q

Vậy P<Q.

mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá

Bình luận (0)
AH
10 tháng 4 2018 lúc 22:14

Đơn giản P < Q

Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1

Tổng Q có 3 phân số lớn hơn 1

Bình luận (0)
LL
Xem chi tiết
TN
3 tháng 12 2017 lúc 21:04

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

Bình luận (0)
NA
Xem chi tiết
PL
Xem chi tiết
TD
13 tháng 7 2017 lúc 14:46

A=24783,14746B=49566,29188

Vậy A<B

Bình luận (0)
HH
14 tháng 7 2017 lúc 14:17

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

Bình luận (0)
NV
Xem chi tiết
TT
Xem chi tiết

link nà:https://olm.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+:+A=2017%5E2017/2018%5E2017+1B=2017%5E2016+1/2017%5E2017+1+&id=862033

Bình luận (0)
TT
21 tháng 4 2018 lúc 12:16

Thanks

Bình luận (0)