So sánh 3/1.4 + 3/4.7+ 3/7.10+...+3/91.94+3/94.97 với 1
so sánh 3/1.4+3/4.7+3/7.10+....+3/91.94+3/94.97 với 1
\(\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{94.97}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{94}-\frac{1}{97}\)
\(=1-\frac{1}{97}\)
\(=\frac{96}{97}\)
mà \(\frac{96}{97}< 1\)
\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.07}< 1\)
vậy..................
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{91\cdot94}+\frac{3}{94\cdot97}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)
\(=1-\frac{1}{97}\)
\(=\frac{96}{97}\)
\(\Rightarrow\frac{96}{97}< 1\)
\(\Rightarrow\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)
Vậy \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{94\cdot97}< 1\)
1.
a) 1/1.4+1/4.7+1/7.10+...+1/100.103
b)-1/3+-1/15+-1/35+-1/63+...+-1/9999
2.
3/1.4+3/4.7+3/7.10+...+3/94.97+3/97.100
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
2/1.4+2/4.7+2/7.10+...+2/91.94+2/94.97
Các bạn giúp mình với
Đặt 2/3 ra ngoài trong ngoặc còn :
1-1/4+1/4-1/7+...-1/97=96/97
Lấy 2/3 nhân với 96/97 sẽ ra đáp án nhé
3/1.4 + 3/4.7 + 3/7.10 + ... + 3/94.97
`3/1.4+3/4.7+3/7.10+...+3/94.97`
`=1/1-1/4+1/4-1/7+1/7-1/10+...+1/94-1/97`
`=1-1/97`
`=96/97`
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\\ =1-\dfrac{1}{97}=\dfrac{96}{97}\)
Tính Nhanh 3/1.4 + 3/4.7 +3/7.10 +....+ 3/94.97 + 3/97.100
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tại sao ko đóng mở ngoặc phép tính rồi nhân 3 vậy?
Tính nhanh
a) 2/1.4+2/4.7+2/7.10+...+2/91.94+2/94.97
b) 1/5.8+1/8.11+1/11.14+...+1/605.608
(2/1.4=2 trên 1.4; 1/5.8=1 trên 5.8)
Ai lm đc nhớ nghi lời, cách giải đầy đủ
Cảm ơn!!!
\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
\(\dfrac{3}{2}A=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{97-94}{94.97}\)
\(\dfrac{3}{2}A=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{97}{94.97}-\dfrac{94}{94.97}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{97}=\dfrac{96}{97}\)
⇒ A = \(\dfrac{96}{97}:\dfrac{3}{2}=\dfrac{64}{97}\)
Câu B cách làm tương tự, thắc mắc gì bạn cứ hỏi nhé.
So sánh A với 1, biết A= 3/1.4+3/4.7+3/7.10+....+3/61.64+3/64.67
( 31/1.4= 31 trên 3.4)
\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}+\dfrac{3}{64\cdot67}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\)
\(A=1-\dfrac{1}{67}\) < 1
=> A<1
Ta có:
\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{61.64}+\dfrac{3}{64.67}\)
\(=3.\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\right)\)
\(=3.\left(1-\dfrac{1}{67}\right)\)
\(=3.\dfrac{66}{67}\)
\(=\dfrac{198}{67}\)
Vì \(\dfrac{198}{67}\) có tử lớn hơn mẫu nên \(\dfrac{198}{67}>1\)
Vậy \(A>1\)
sửa bài:
... \(=1-\dfrac{1}{67}\)
\(=\dfrac{66}{67}\)
Vì \(\dfrac{66}{67}\) có tử nhỏ hơn mẫu nên \(\dfrac{66}{67}< 1\)
Vậy \(A< 1\)
Tính:
a/ -1/n - 1/n+a
b/ 1/1.2 + 1 /2.3 + 1/3.4 +......+ 1/2007.2008
c/ 3/1.4 + 3/4.7 + 3/7.10 +........+ 3/94.97
a; \(\dfrac{-1}{n}\) - \(\dfrac{1}{n+a}\)
= \(\dfrac{-n-a-n}{n.\left(n+a\right)}\)
= \(\dfrac{-2n-a}{n.\left(n+a\right)}\)
b; \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ....+ \(\dfrac{1}{2007.2008}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)
= \(\dfrac{1}{1}\) - \(\dfrac{1}{2008}\)
= \(\dfrac{2007}{2008}\)
c; \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
= \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
= \(\dfrac{1}{1}\) - \(\dfrac{1}{97}\)
= \(\dfrac{96}{97}\)
tinh tong :
\(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) +.............+\(\dfrac{3}{94.97}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(=1-\dfrac{1}{97}\)
\(=\dfrac{96}{97}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)
\(=3\left(1-\dfrac{1}{97}\right)\)
\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)
\(=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{37.40}\right)\)
\(=\dfrac{1}{3}.\left(3-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+...+\dfrac{3}{37}-\dfrac{3}{40}\right)\)
= \(\dfrac{1}{3}.\left(3-\dfrac{3}{40}\right)\)
= \(\dfrac{1}{3}.\dfrac{117}{40}\)
\(=\dfrac{39}{40}\)