Những câu hỏi liên quan
NQ
Xem chi tiết
DT
27 tháng 4 2019 lúc 20:00

\(\left(a^2-1\right)^2\ge0\)

\(\Leftrightarrow a^4-2a^2+1\ge0\)

\(\Leftrightarrow a^4+1\ge2a^2\)

\(\Leftrightarrow1.\left(a^4+1\right)\ge2a^2\)

\(\Leftrightarrow\frac{1}{2}\ge\frac{a^2}{a^4+1}\) (đpcm)

Bình luận (0)
LQ
27 tháng 4 2019 lúc 20:04

\(\frac{a^2}{a^4+1}\le\frac{1}{2}\)

\(\Leftrightarrow a^4+1\ge2a^2\)                                     (1)

Mà theo BĐT Cauchy có

\(a^4+1\ge2\sqrt{a^4}\)

\(\Leftrightarrow a^4+1\ge2a^2\)

Suy ra BĐT (1) luôn đúng

suy ra đề bài luôn đúng

Bình luận (0)
H24
Xem chi tiết
NV
3 tháng 8 2016 lúc 9:56

Đề chính xác k bạn

Bình luận (0)
VN
4 tháng 8 2016 lúc 0:02

với x,y >0 ta có :   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)..\)

Áp dụng bất đẳng thức trên được: 

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\left(1\right).\)( vì abc = 1 ) 

Chứng minh tương tự ta được : \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\left(2\right).\)

                                                             \(\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\left(3\right).\)

Cộng vế với vế các BĐT (1), (2) và (3) ta được :

                                     \(P\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+1}\right)=\frac{3}{4}.\)( đpcm )

dấu " = " xẩy ra khi a = b = c = 1 

Bình luận (0)
KN
Xem chi tiết
NC
14 tháng 4 2020 lúc 18:23

Kiểm tra lại đề nhé! 

Em thử cho a = b = c xem sao?

Bình luận (0)
 Khách vãng lai đã xóa
H24
14 tháng 4 2020 lúc 20:35

sửa số 2 thành số 8 nha

Bình luận (0)
 Khách vãng lai đã xóa
ZN
14 tháng 4 2020 lúc 20:50

kiem tra de ban oi

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
BH
22 tháng 3 2018 lúc 12:43

Áp dụng bất đẳng thức có: 

\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+a+b+c}=\frac{16}{2a+b+c}\)<=> \(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)

Tương tự: \(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{a+b+2c}\)

Cộng 2 vế với nhau ta được: 

\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{2a+b+c}+\frac{16}{a+2b+c}+\frac{16}{a+b+2c}\)

<=> \(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\ge16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)

=> \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
DH
24 tháng 4 2020 lúc 2:03

Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))

Violympic toán 8

Bình luận (0)
AZ
23 tháng 4 2020 lúc 13:28

Cho em xin slot nha mấy anh đz :))

Bình luận (0)
KN
Xem chi tiết
H24
18 tháng 4 2020 lúc 18:59

:D

\(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^2+8ca\right)}+\frac{1}{c\left(c^2+ab\right)}\le\frac{1}{3abc}\)

\(\Leftrightarrow\frac{1}{\frac{a^2}{bc}+8}+\frac{1}{\frac{b^2}{ca}+8}+\frac{1}{\frac{c^2}{ab}+8}\le3\) (*)

Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\left(x,y,z>0\right)\)

(*)\(\Leftrightarrow\frac{1}{x+8}+\frac{1}{y+8}+\frac{1}{z+8}\le\frac{1}{3}\)

\(\Leftrightarrow16\left(x+y+z\right)+5\left(xy+yz+zx\right)\ge63\)(**)

(**) đúng bởi \(x+y+z\ge3\sqrt[3]{xyz}=3;xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
TM
25 tháng 10 2016 lúc 22:23

Không làm mất tính tổng quát của bài toán, giả sử \(a\ge b\ge c\)(1)

Có \(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}=\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

Từ (1) => \(\hept{\begin{cases}\frac{2}{a}\le\frac{1}{a}+\frac{1}{b}\\\frac{2}{b}\le\frac{1}{b}+\frac{1}{c}\\\frac{2}{c}\le\frac{1}{a}+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{\frac{2}{a}}\le\sqrt{\frac{1}{a}+\frac{1}{b}}\\\sqrt{\frac{2}{b}}\le\sqrt{\frac{1}{b}+\frac{1}{c}}\\\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{a}+\frac{1}{c}}\end{cases}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)

Ta có đpcm

Bình luận (0)
TD
Xem chi tiết
TT
5 tháng 2 2020 lúc 15:44

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

Bình luận (0)
 Khách vãng lai đã xóa
NM
5 tháng 2 2020 lúc 17:33

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NM
6 tháng 2 2020 lúc 18:24

2 )

Áp dụng bất đẳng thức Cacuchy - Schwarz :
\(VT=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\left(1\right)\)

Vì \(a+b+c=1\)nên 

\(a^2+b^2+c^2=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=\left(a^3++ab^2+b^3+bc^2+c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

Áp dụng AM - GM 

\(a^3+ab^2\ge2a^2b\). Tương tự cho 2 cặp còn lại suy ra 

\(a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa