Những câu hỏi liên quan
DH
Xem chi tiết
VT
Xem chi tiết
MN
Xem chi tiết
DH
Xem chi tiết
CM
23 tháng 3 2016 lúc 21:33

đoạn trên nhầm mà là 1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)vì a+b+c=1

Bình luận (0)
CM
23 tháng 3 2016 lúc 21:30

Vì a+b+c=1=>(a+b+c)=(1/a+1/b+1/c)*(a+b+c)

=1+1+1+a/b+b/a+a/c+c/a+b/c+c/b

Áp dung cô si cho a/b+b/a>hoac bang 2

Tg tự a/c+c/a:b/c+c/b cũng vậy

=>(a+b+c)(1/a+1/b+1/c)>hoac bang9

p =.1/a+1/b+1/c>hoac bang9

Bình luận (0)
HP
23 tháng 3 2016 lúc 21:34

Dùng bđt Bunhiacopski ta có : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)

Bình luận (0)
PP
Xem chi tiết
TU
22 tháng 2 2016 lúc 20:03

xét vế trái ta có (nhân vào )

a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c  >= 9

<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9

áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được 

3 +2 +2+2 >=9

=> đpcm

ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !

vì a/b +b/a >=2 nên ta xét hiệu:

a/b + b/c - 2 >= 0

ta quy đồng mẫu các phân số :

<=> a/ab + b2/ab - 2ab/ab >= 0

<=> (a+ b2 - 2ab) / ab = (a-b)2 /ab >=0

dấu = xảy ra khi a-b =0 <=> a=b

nên a/b + b/a - 2 >=0

<=> a/b + b/a >= 2  dấu = xảy ra khi a=b  

Bình luận (0)
PP
22 tháng 2 2016 lúc 17:23

giúp mk nha mk gấp lắm

Bình luận (0)
TG
Xem chi tiết
PN
3 tháng 2 2016 lúc 10:36

Bạn ghi đề nhớ để dấu cho đúng nhé.

\(1.\) Cho  \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)  \(\left(1\right)\)

\(CMR:\)  \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

                                     \(----------------------\)

Ta có:

Từ  \(\left(1\right)\)  \(\Rightarrow\)  \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)  

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

              \(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)  \(\left(đpcm\right)\)

 

Bình luận (0)
TA
Xem chi tiết
H24
20 tháng 8 2023 lúc 9:52

Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).

Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)

Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc

Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.

Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)

Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)

Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1

Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.

Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.

Bình luận (0)
QT
Xem chi tiết
TH
12 tháng 5 2022 lúc 22:07

-Áp dụng BĐT Caushy Schwarz ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)

-Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
VN
Xem chi tiết