chứng minh rằng nếu(7a + 11b) chia hết cho 3 thì (2a+b) chia hết cho 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng nếu (7a + 11b )chia hết cho 3 thì (2a+b)chia hết cho 3
A=7a+11b
B= 2a+b
2A -7B =14a +22b - 14a - 7b = 15 chia hết cho 3
+ Nếu A chia hết cho 3 => 2A chia hết cho 3 =>. 7B chia hết cho 3 => B chia hết cho 3
Vậy A chia hết cho 3 thì B chia hết cho 3
chứng minh rằng nếu (7a+11b)chia hết cho 3 thì (2a+b) chia hết cho 3
ai lam dung mik tick cho nhà
Ta có 7a + 11b chia hết 3
\(\Rightarrow\)2.(7a+11b) chia hết cho 3
\(\Rightarrow\)14a + 22b chia hết cho 3
\(\Rightarrow\)7.(2a + b) + 15b chia hết cho 3
Vì 15b chia hết cho 3 \(\Rightarrow\)7.(2a + b) chia hết cho 3
\(\Rightarrow\)2a + b chia hết cho 3(đpcm)
Chứng minh rằng: 2a - 5b + 6c chia hết cho 17 nếu a - 11b + 3c chia hết cho 17 ( a,b,c thuộc Z)
nhân 2a-5b+6c với 9 rồi trừ đi a-11b+3c
Chứng minh rằng : 2a-5b+6c chia hết cho 17 nếu a-11b+3c chia hết cho 17 (a,b,c thuộc Z)
chứng minh rằng : 2a-5b+6c chia hết cho 17 nếu a-11b + 3c chia hết cho 17 (a,b,c thuộc Z)
Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)
Ta có \(17b⋮17\)
Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)
1duocgoitienganhla
Nguyễn Ngọc Ánh Minh trả lời đúng quá
chứng minh rằng : 2a -5b+6c chia hết cho 17 nếu a -11b + 3c chia hết cho 17 (a,b,c thuộc Z)
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
Chứng minh rằng: 2a-5b+6c chia hết cho 17 nếu a-11b+3c chia hết cho 17
Chứng minh rằng :
Nếu 5a + 9b chia hết cho 13 thì 2a + b chia hết cho 13
Nếu 7a + 5b chia hết cho 19 thì 6a + 7b chia hết cho 19
a) Xét hiệu 2. (5a + 9b) - 5.(2a + b) = 10a + 18b - (10a + 5b) = (10a - 10a) + (18b - 5b) = 13b
Vì 5a + 9b chia hết cho 13 => 2(5a + 9b) chia hết cho 13
13b chia hết cho 13
=> 5.(2a + b) chia hết cho 13 (Áp dụng tính chất a ; b chia hết cho c thì a - c chia hết cho c)
mà (5; 13) = 1 nên 2a+ b chia hết cho 13
b) Xét hiệu 7.(6a + 7b) - 6(7a + 5b) = 42a + 49b - (42a + 30b) = (42a - 42a) + (49b - 30b) = 19b
=> 7.(6a + 7b) = 19b + 6(7a + 5b)
Vì 19b chia hết cho 19 và 6.(7a + 5b) chia hết cho 19 ( do 7a + 5b chia hết cho 19)
Nên 7.(6a + 7b) chia hết cho 19. ta có (7; 19) = 1 => 6a + 7b chia hết cho 19
*) Với bài tập này: Áp dụng tính chất x; y chia hết cho z thì x- y ; x + y chia hết cho z
Muốn vậy, ta nhân vào hai biểu thức đã cho số thích hợp nhằm khử a hoặc b (bài trên : khử đi a) để kết quả thu được là bội của số cần chứng minh chia hết
Quên thanks Trần Đức Thắng , mà làm câu Nếu 7a + 5b chia hết cho 19 thì 6a + 7b chia hết cho 19 luôn đi
a) Xét hiệu 2. (5a + 9b) - 5.(2a + b) = 10a + 18b - (10a + 5b) = (10a - 10a) + (18b - 5b) = 13b
Vì 5a + 9b \(⋮\) 13 => 2(5a + 9b) \(⋮\) 13
13b \(⋮\)13
=> 5.(2a + b) \(⋮\) 13 mà (5; 13) = 1 nên 2a+ b\(⋮\) 13
P/s câu b tương tự
chứng minh rằng : 2a -5b + 6c chia hết cho 7 nếu a-11b+3c chia hết cho 17 ( a, b , c thuộc Z )
Ta có a-11b+3c chia hết cho 17 => 2a+22b+6c cũng chia hết cho 17
Ta có 2a+22b+6c+2a-5b+6c=17b chia hết cho 17
=> 2a-5b+6c chia hết cho 17