\(A=\frac{1999}{2000}+\frac{2000}{2001}vàB=\frac{1999+2000}{2000+2001}\)
So sánh : \(\frac{1999×2000}{1999×2000+1}\)và \(\frac{2000×2001}{2000×2001+1}\)
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
Tìm x, biết :
a, \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\right)x=-3\);
b, \(\left(\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}}\right)x=\frac{-1}{5}\).
c,\(\left(\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}}\right):x=\frac{-2001}{2002}\).
So sánh hai phân số sau:
A=\(\frac{1999^{2002}+1}{1999^{2001}+1}\)
và B=\(\frac{1999^{2001}+1}{1999^{2000}+1}\)
A và B khi tính ra sẽ ra số rất lớn ko thể so sánh vì vậy
ta lấy số mũ :
_ A sẽ có số mũ là 2001 và 2002
_ B sẽ có số mũ là 2001 và 2000
A và B sẽ có 2001 = 2001 còn 2002 > 2000
=> A > B
chúc bạn học giỏi
ta có \(\frac{A}{1999}=\frac{1999^{2002}+1}{1999^{2002}+1999}=1-\frac{1998}{1999^{2002}+1999}\)
và \(\frac{B}{1999}=\frac{1999^{2001}+1}{1999^{2001}+1999}=1-\frac{1998}{1999^{2001}+1999}\)
vì 19992001+1999 < 19992002+1999 \(\Rightarrow\frac{1998}{1999^{2001}+1999}>\frac{1998}{1999^{2002}+1999}\)\(\Rightarrow\frac{B}{1999}>\frac{A}{1999}\)\(\Rightarrow B>A\)
So sánh: A=1999/2000+2000/2001 và B=1999+2000/2000+2001
\(B=\frac{1999+2000}{2000+2001}\)
\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Vì \(\frac{1999}{2000+2001}< \frac{1999}{2000}\) ; \(\frac{2000}{2000+2001}< \frac{2000}{2001}\)
\(\Rightarrow\)\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)< \(A=\frac{1999}{2000}+\frac{2000}{2001}\)
\(\Rightarrow\)B < A
Vậy B < A
so sánh 1999/2000 + 2000/2001 và 1999+2000/2000+2001
Tìm x :
a) \(\frac{x+1}{2000}+\frac{x+2}{1999}+\frac{x+ 3}{1998}+\frac{x+4}{1997}=-4\)
\(b.\frac{x+1}{1999}+\frac{x+2}{2000}+\frac{x+3}{2001}=\frac{x+4}{2002}+\frac{x+5}{2003}+\frac{x+6}{2004}\)
\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)
\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
\(=>x+2001=0\)
\(x=-2001\)
\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)
\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
\(=>x+1998=0\)
\(x=-1998\)
dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{x+1}{2000}+\frac{x+2}{1999}+\frac{x+3}{1998}+\frac{x+4}{1997}=-4\)
\(\Leftrightarrow\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\) \(\left(\frac{x+4}{1997}+1\right)=0\)
\(\Leftrightarrow\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(\Leftrightarrow\left(x+2001\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
Mà : \(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\ne0\)
\(\Rightarrow x+2001=0\)
\(\Leftrightarrow x=-2001\)
so sánh 1999*2000/1999*2000+1 và 2000*2001/2000*2001+1
vì 2 phan số = 1 nên khi cộng với 1 thì = 2 mà 2= 2 nên 2 phân số bằng nhau
So sánh \(\frac{-1999}{2000}\)và \(\frac{-2000}{2001}\)
\(\frac{-1999}{2000}\)>\(\frac{-1999}{2001}\)>\(\frac{-2000}{2001}\)
bạn ghi cách giải giùm mình được không
So sánh 1999×2000/1999×2000+1 & 2000×2001/2000×2001
< đó bn
cái đầu thì mẫu hơn tử 1 => cái đầu < 1
cái 2 tử mẫu = nhau => =1
====> cái đầu< cái 2 (nhìn tưởng phức tạp )
đúng nha mk pải off đây