Những câu hỏi liên quan
NT
Xem chi tiết
GT
27 tháng 8 2018 lúc 22:19

tính số cuối cùng và cộng lại nếu là số lẻ thì nguyên tố

Bình luận (0)
DD
10 tháng 4 2020 lúc 21:47

tính số cuối cùng và cộng lại nếu là số lẻ thì nguyên tố

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
10 tháng 4 2020 lúc 23:43

Đinh Ngọc Dương OLM không đón mấy đứa thích gáy ngu nhưng không giải

Xét n=0 ( KTM )

Xét n=1 thỏa mãn

Xét n lớn hơn hoặc bằng 2:

\(A=n^{2017}+n^{2015}+1\)

\(=\left(n^{2017}-n\right)+\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^{2016}-1\right)+n\left(n^{2014}-1\right)+\left(n^2+n+1\right)\)

\(n^{2016}-1=\left[\left(n^3\right)^{672}-1^{672}\right]=\left(n^3-1\right)\cdot P=\left(n-1\right)\left(n^2+n+1\right)\cdot P=\left(n^2+n+1\right)\cdot P'\)

Tương tự:\(n^{2014}-1=\left(n^2+n+1\right)\cdot T'\)

Khi đóL\(A=\left(n^2+n+1\right)\left(P'+T'+1\right)\) là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NL
Xem chi tiết
PN
Xem chi tiết
MR
Xem chi tiết
NL
Xem chi tiết
TY
31 tháng 3 2020 lúc 14:31

Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)

Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)

Với \(x\ge2\) ta có:

\(n^5+n^4+1\)

\(=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)

Vậy \(n=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TY
31 tháng 3 2020 lúc 14:37

Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT

Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT

Với \(n\ge2\) ta có:

\(A=n^8+n+1\)

\(=\left(n^8-n^2\right)+n^2+n+1\)

\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)

\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)

Vậy \(n=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
31 tháng 3 2020 lúc 19:17

1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)

TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)

Thử lại sai

TH2: \(n^2+n+1=n^5+n^4+1\)

\(\Leftrightarrow n^5-n^2+n^4-n=0\)

\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)

Thử lại thấy n=1 thỏa mãn

Vậy n=1

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24

Ta có : n^3 - n^2 + n - 1 = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1).
Để n^3 - n^2 + n - 1 là số nguyên tố thì ta có 2 TH :
TH1 : n^2 + 1 = 1 ; n - 1 nguyên tố => không có n thỏa mãn.
TH2 : n^2 + 1 nguyên tố, n - 1 = 1 => n = 2 (chọn)
Vậy n = 2 để n^3 - n^2 + n - 1 nguyên tố

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
NC
9 tháng 8 2019 lúc 12:00

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

Bình luận (0)
KN
Xem chi tiết