Những câu hỏi liên quan
ND
Xem chi tiết
MH
17 tháng 10 2023 lúc 16:15

\(Đặt\) \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)

\(2A=2.2^3+3.2^4+4.2^5+....+n.2^{n+1}\)

\(2A-A=2.2^3+3.2^4+4.2^5+....+n.2^{n+1}-\left(2.2^2+3.2^3+4.2^4+...+n.2^n\right)\)

\(=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(=-2^2-\left(2^2+2^3+...+2^n\right)+n.2^{n+1}\)

\(=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)

\(=\left(n-1\right).2^{n+1}\)

=> \(\left(n-1\right).2^{n+1}=2^{n+16}=2^{n+1}.2^{15}\)

\(\Leftrightarrow n-1=2^{15}\)

\(\Leftrightarrow n=2^{15}+1\)

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
DH
6 tháng 3 2021 lúc 17:52

\(A=2.2^2+3.2^3+...+n.2^n\)

\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)

\(A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(A=-2^2-\left(2^2+2^3+2^4+...+2^n\right)+n.2^{n+1}\)

\(A=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)

\(A=\left(n-1\right)2^{n+1}=\left(2n-2\right).2^n\)

Từ đây phương trình ban đầu tương đương với: 

\(\left(2n-2\right).2^n=2^{n+34}\)

\(\Leftrightarrow\left(2n-2\right).2^n=2^n.2^{34}\)

\(\Leftrightarrow n-1=2^{33}\)

\(\Leftrightarrow n=2^{33}+1\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
SI
7 tháng 3 2021 lúc 20:34

Tham khảo : Tìm số tự nhiên n thoả mãn 2.2^2 +3.2^3 +4.2^4+ ...+n.2^n = 2^n+11 - My Hien

Bình luận (0)
SI
7 tháng 3 2021 lúc 20:36

Tham khảo : Tìm số tự nhiên n thoả mãn - My Hien

Bình luận (0)
NH
Xem chi tiết
LC
25 tháng 10 2015 lúc 13:27

Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)

=>\(2.A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

=>\(A-2A=2.2^2+3.2^3+4.2^4+...+n.2^n-2.2^3-3.2^4-4.2^5-...-n.2^{n+1}\)

=>\(-A=2.2^2+\left(3.2^3-2.2^3\right)+\left(4.2^4-3.2^4\right)+...+\left(n.2^n-\left(n-1\right).2^n\right)-n.2^{n+1}\)

=>\(-A=2^3+2^3+2^4+...+2^n-n.2^{n+1}\)

=>\(-A=2^3+\left(2^3+2^4+...+2^n\right)-n.2^{n+1}\)

=>\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

Đặt \(B=2^3+2^4+...+2^n\)

=>\(2.B=2^4+2^5+...+2^{n+1}\)

=>\(2.B-B=2^4+2^5+...+2^{n+1}-2^3-2^4-...-2^n\)

=>\(B=2^{n+1}-2^3\)

Lại có:\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

=>\(A=n.2^{n+1}-2^3-B\)

=>\(A=n.2^{n+1}-2^3-\left(2^{n+1}-2^3\right)\)

=>\(A=n.2^{n+1}-2^3-2^{n+1}+2^3\)

=>\(A=n.2^{n+1}-2^{n+1}\)

=>\(A=\left(n-1\right).2^{n+1}\)

Mà \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)

=>\(\left(n-1\right).2^{n+1}=2^{n+10}\)

=>\(n-1=2^{n+10}:2^{n+1}\)

=>\(n-1=2^{n+10-n-1}\)

=>\(n-1=2^9\)

=>\(n-1=512\)

=>\(n=513\)

Vậy n=513

Bình luận (0)
YK
25 tháng 10 2015 lúc 13:34

dài thế hình như cô giáo lớp mình giải còn ngắn hơn thế này

Bình luận (0)
NH
Xem chi tiết
VK
Xem chi tiết
BL
Xem chi tiết