Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
AL
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
NH
17 tháng 4 2024 lúc 11:22

Bình luận (0)
TK
Xem chi tiết
HA
23 tháng 2 2015 lúc 20:37

tong 1+2+3+...+n=(n+1)n/2 . vi n(n+1) la 2 so tu nhien lien tiep nen tan cung bang 0;2;6 suy ra N=1+2+3+4+5+...+n-7= (n+1)n/2-7

suy ra N tan cung bang 3;4;6 suy ra khong chia het cho 10

Bình luận (0)
TK
23 tháng 2 2015 lúc 20:41

Vay con n.(n+1) con phai chia cho 2 nua

Bình luận (0)
AH
6 tháng 7 2018 lúc 16:01

༺Ɗเευ༒Ƭɦυyεɳ༻

Bình luận (0)
NV
Xem chi tiết
AH
28 tháng 7 2024 lúc 22:48

Lời giải:

$A=1+2+3+....+n-7=\frac{n(n+1)}{2}-7=\frac{n^2+n-14}{2}$

Để chứng minh $A\not\vdots 10$, ta chỉ ra $A\not\vdots 5$

Nếu $n\vdots 5$ thì hiển nhiên $n^2+n-14\not\vdots 5$

$\Rightarrow A\not\vdots 5$

Nếu $n=5k+1(k\in\mathbb{N})$ thì:

$n^2+n-14=(5k+1)^2+5k+1-14=25k^2+15k-12\not\vdots 5$

$\Rightarrow A\not\vdots 5$

Nếu $n=5k+2(k\in\mathbb{N})$ thì:

$n^2+n-14=(5k+2)^2+5k+2-14=25k^2+25k-8\not\vdots 5$

$\Rightarrow A\not\vdots 5$

Nếu $n=5k+3(k\in\mathbb{N})$ thì:

$n^2+n-14=(5k+3)^2+5k+3-14=25k^2+35k-2\not\vdots 5$
$\Rightarrow A\not\vdots 5$

Nếu $n=5k+4(k\in\mathbb{N})$ thì:

$n^2+n-14=(5k+4)^2+5k+4-14=25k^2+45k+6\not\vdots 5$

$\Rightarrow A\not\vdots 5$

Vậy $A\not\vdots 5$ nên $A\not\vdots 10$

Bình luận (0)
DT
Xem chi tiết
LV
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

Bình luận (2)
H24
Xem chi tiết
DH
Xem chi tiết