Giải phương trình sau: x^2+x*2018+2109
Giải phương trình sau: \(\dfrac{1}{x^2-x+1}+\dfrac{2}{x^2-x+2}+\dfrac{3}{x^2-x+3}+....+\dfrac{2018}{x^2-x+2018}=2018\)
Giải phương trình : 4-x/2018-2=3-x/2019-x/1011
giải phương trình" \(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+1}\)
giải phương trình \(\frac{2017}{x^2+2017}+\frac{2018}{x^2+2018}=2\)
1. Giải phương trình sau:
\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
2. Cho các số thực x,y thỏa mã điều kiện:
\(\sqrt{x^2+11}+\sqrt{x^2-2018}+x^2=\sqrt{y^2+11}+\sqrt{y^2-2018}+y^2\)
Tính giá trị biểu thức: \(M=x^{11}-y^{2018}\)
3. Cho tam giác ABC vuông tại A trên cạnh BC lấy điểm D bất kỳ. Gọi E và F lần lượt là hình chiếu của D trên cạnh AB và AC.
a) CM: DB.DC=EA.EB+FA.FC
b) Trên cạnh BC lấy điểm M sao cho ^BAD=^CAM
CMR: \(\dfrac{DB}{DC}.\dfrac{MB}{MC}=\dfrac{AB^2}{AC^2}\)
1.
đk: \(x\ge2\)
Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:
ta có : \(x^3-3x^2+2y^3-6x=0\)
\(\Leftrightarrow x^3-3xy^2+2y^3=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)
\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)
\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)
\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)
\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)
\(2.đk:x^2;y^2\ge2018\Leftrightarrow\left[{}\begin{matrix}x;y\le-\sqrt{2018}\\x;y\ge\sqrt{2018}\end{matrix}\right.\)
\(pt\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x^2-2018}-\sqrt{y^2-2018}+x^2-y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)+\dfrac{x^2+11-y^2-11}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{x^2-2018-y^2+2018}{\sqrt{x^2-2018}+\sqrt{y^2-2018}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left[1+\dfrac{1}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{1}{\sqrt{x^2-2018}+\sqrt{y^2+2018}}>0\right]=0\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(x=y\Rightarrow M=x^{11}-x^{2018}\)
\(x=-y\Rightarrow M=-y^{11}-y^{2018}=:vvv\) (đến đây chịu)
Giải phương trình :
/x-2016/+/x-2017/+/x-2018/=2
Ai giúp mình với! Cần gấp!
Ta co:
\(\left|x-2016\right|+\left|x-2018\right|=\left|x-2016\right|+\left|2018-x\right|\ge\left|x-2016+2018-x\right|=2\)
\(\left|x-2017\right|\ge0\)
\(\Rightarrow\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\ge2\)
Dau "=" xay ra tai \(\hept{\begin{cases}2016\le x\le2018\\x=2017\end{cases}}\)
Vay x=2017
đây có phải cách cấp 2 k bn??
Giải phương trình sau:
\(\left(2\text{x}^2+x-2018\right)^2+4\left(x^2-5\text{x}-2017\right)^2\) = \(4\left(2\text{x}^2+x-2018\right)\left(x^2-5\text{x}-2017\right)\)
Đặt \(2x^2+x-2018=a;x^2-5x-2017=b\) ta có :
\(a^2+4b^2=4ab\)
\(\Leftrightarrow\)\(a^2-4ab+4b^2=0\)
\(\Leftrightarrow\)\(\left(a-2b\right)^2=0\)
\(\Leftrightarrow\)\(a-2b=0\)
\(\Leftrightarrow\)\(2x^2+x-2018-2\left(x^2-5x-2017\right)=0\)
\(\Leftrightarrow\)\(2x^2+x-2018-2x^2+10x+4034=0\)
\(\Leftrightarrow\)\(11x+2016=0\)
\(\Leftrightarrow\)\(x=\frac{-2016}{11}\)
Vậy \(x=\frac{-2016}{11}\)
Chúc bạn học tốt ~
Giải phương trình sau
\(\frac{\sqrt{x}-x}{\sqrt{x}-1}=2018\)
Mk dang dung mobile phone ko go can bac 2 dc
Chieu mk lm cho
\(Dặt:\sqrt{x}=a\)
\(Tacó:\)
\(\frac{\sqrt{x}-x}{\sqrt{x}-1}=2018\Leftrightarrow a-a^2=2018a-2018\)
\(nhaan2vevoi2018:2018a-2018a^2=\left(2018a-2018\right)2018\)
\(\Leftrightarrow2018a-2018a^2-2018a+2018=\left(2018a-2018\right)2017\)
\(\Leftrightarrow2018\left(1-a\right)=2018\left(a-1\right)2017\)
\(\Leftrightarrow\left(1-a\right)=\left(a-1\right)2017\)
\(\Leftrightarrow1-a+a-1=2018\left(a-1\right)\Leftrightarrow0=2018\left(a-1\right)\Leftrightarrow a=1\)
Thử lại 1 ta thấy ko tm vậy ko có gt x tm đề bài
Giải phương trình .x-2/2017+x-3/2018=x-4/2019+x-5/2020
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
<=> x + 2015 = 0 ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x = - 2015
Vậy x = -2015.
Giải phương trình :
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\left(\frac{x-2}{2017}+1\right)+\left(\frac{x-3}{2018}+1\right)=\left(\frac{x-4}{2019}+1\right)+\left(\frac{x-5}{2020}+1\right)\)
\(\Rightarrow\frac{x-2+2017}{2017}+\frac{x-3+2018}{2018}=\frac{x-4+2019}{2019}+\frac{x-5+2020}{2020}\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}=\frac{x+2015}{2019}+\frac{x+2015}{2020}\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+15\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
Vậy x = - 2015