tìm các số nguyên a để biểu thức sau có giá trị là số nguyên
\(M=\frac{2a+8}{5}+\frac{-a-7}{5}\)
Tìm các số nguyên a để biểu thức sau có giá trị là số nguyên:
a) \(M=\frac{2a+8}{5}+\frac{-a-7}{5}\)
b)\(N=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}+\frac{-3a}{a+3}+\frac{-4a-23}{a+3}\)
Tìm số nguyên a để các biểu thức sau nguyên
M=\(\frac{2a+8}{5}+\frac{-a-7}{5}\)
N=\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}+\frac{-3a}{a+3}+\frac{-4a-23}{a+3}\)
tím các số nguyên a để biệu thức sau có giá trị là 1 số nguyên
M= 2a+8/5+-a-7/5
N= 2a+9/a+3+5a+17/a+3+-3a/a+3+-4a-23/a+3
M=\(\frac{40|2a-1|+15}{10a-5}\)
Tìm a \(\in\)N để biểu thức M có giá trị là số nguyên
Cho biểu thức:
\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)
a. Rút gọn A
b. Tìm các số nguyên a để A có giá trị là một số nguyên
\(a,\)\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)
\(=\frac{\left(a+2\right)^2}{a^2\left(a+2\right)-4\left(a+2\right)}\)
\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}\)
\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a+2\right)\left(a-2\right)}\)
\(=\frac{1}{a-2}\)
\(a,A=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}=\frac{a+2}{\left(a-2\right)\left(a+2\right)}=\frac{1}{a-2}\)
b, Để A có giá trị là một số nguyên thì \(1⋮a-2\)
=> \(\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)
\(a,\)Để \(A\in Z\Rightarrow\frac{1}{x-2}\in Z\)\(\Rightarrow1\)\(⋮\)\(a-2\)
\(\Leftrightarrow a-2\inƯ_1\)
Mà \(Ư_1=\left\{1;-1\right\}\)
\(\Rightarrow\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)
Vậy \(A\in Z\Leftrightarrow a\in\left\{1;3\right\}\)
tìm số nguyên a để các biểu thức sau có giá trị là một số nguyên. a, A=\(\frac{1-2a}{a+3}\);b,B=\(\frac{6\sqrt{a+1}}{2\sqrt{a}-3}\)
Giúp mình với nhé!!
cho biểu thức sau :
a) Rút gọn A
b) Tìm các giá trị nguyên của x để A có giá trị là số nguyên lớn nhất và số nguyên nhỏ nhất
A= \(\frac{1}{3}.\left(\frac{-65}{x-7}+\frac{26}{x-7}\right)\)
Tìm n thuộc Z để biểu thức sau có giá trị nguyên
A= \(\frac{2n+8}{5}+\frac{-n-7}{5}\)
\(A=\frac{2n+8}{5}+\frac{-n-7}{5}\)
\(\Leftrightarrow A=\frac{2n+8-n-7}{5}\)
\(\Leftrightarrow A=\frac{n+1}{5}\)
Để A nguyên thì \(\frac{n+1}{5}\)nguyên
\(\Rightarrow\left(n+1\right)⋮5\)
\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(m\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất.
a)B=\(\frac{7-x}{x-5}\)
b) C=\(\frac{5x-19}{x-4}\)
2. Tìm số tự nhiên n để p/s\(\frac{7n-8}{2n-3}\)có giá trị lớn nhất