Những câu hỏi liên quan
NC
Xem chi tiết
NR

chịu thua vô điều kiện xin lỗi nha : v

Bình luận (0)
NR

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

Bình luận (0)
KS
30 tháng 7 2019 lúc 19:04

\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt

Bình luận (0)
ND
Xem chi tiết
AN
1 tháng 7 2017 lúc 10:24

\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)

Bình luận (0)
ND
2 tháng 7 2017 lúc 10:08

cảm ơn nha

Bình luận (0)
NL
26 tháng 7 2017 lúc 8:54

=3 ban nhe.kn voi minh nha

Bình luận (0)
NL
Xem chi tiết
CC
Xem chi tiết
LP
2 tháng 5 2019 lúc 18:55

Đáp án giống như đây: https://olm.vn/hoi-dap/detail/218388947486.html

Bình luận (0)
TD
Xem chi tiết
TB
6 tháng 11 2017 lúc 22:05

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

Bình luận (0)
TM
6 tháng 11 2017 lúc 21:39

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

Bình luận (0)
BH
Xem chi tiết
H24
1 tháng 3 2018 lúc 22:44

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

Bình luận (0)
H24
1 tháng 3 2018 lúc 22:37

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...

Bình luận (0)
H24
1 tháng 3 2018 lúc 22:48

Mình nhầm chỗ câu b, sửa lại là :

\(B\ge3\sqrt[3]{\sqrt{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}}\)

Bạn làm tương tự => \(B\ge3\sqrt{2}\).

Bình luận (0)
NA
Xem chi tiết
LP
18 tháng 4 2019 lúc 17:25

Ta chứng minh các bất đẳng thức:

\(x+y\ge2\sqrt{xy}\Leftrightarrow2\sqrt{xy}\le1\Leftrightarrow\sqrt{xy}\le\frac{1}{2}\)

\(x+y\ge2\sqrt{xy}\Leftrightarrow2x+2y\ge x+y+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(x+y\right)=2\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)

\(\left[\left(\frac{x}{\sqrt{x\sqrt{y}}}\right)^2+\left(\frac{y}{\sqrt{y\sqrt{x}}}\right)^2\right]\left(\sqrt{x\sqrt{y}}^2+\sqrt{y\sqrt{x}}^2\right)\ge\left(x+y\right)^2\) (Bunyakovski)

\(\Leftrightarrow\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\ge\frac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}\)

Ta có:

\(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\)

\(\ge\frac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\frac{1}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\ge\frac{1}{\frac{1}{2}\cdot\sqrt{2}}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{x\sqrt{y}}=\frac{y}{y\sqrt{x}}\\x=y\end{cases}\Leftrightarrow x=y}\)

x+y=1 <=> x=y=1/2

Vậy GTNN của biểu thức trên là \(\sqrt{2}\)<=> x=y=1/2

Hơi dài tí, tại chỉ suy nghĩ như thế thôi

Bình luận (0)
NA
19 tháng 4 2019 lúc 7:10

Em cảm ơn Le Hong Phuc ạ!

Bình luận (0)
LP
19 tháng 4 2019 lúc 15:55

cùng tuổi mà sao xưng hô thế

Bình luận (0)
NL
Xem chi tiết
HC
Xem chi tiết
HN
5 tháng 7 2016 lúc 7:52

Mình nghĩ đề bài đúng ra là phải tìm giá trị lớn nhất. Mình làm cả hai nhé ^^

Ta có : \(C=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}=\frac{\sqrt{\left(x-1\right).1}}{x}+\frac{\sqrt{\left(y-2\right).2}}{\sqrt{2}y}\)

Tói đây áp dụng bất đẳng thức Cô-si , ta được : \(\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)

\(\frac{\sqrt{\left(y-2\right).2}}{\sqrt{2}y}\le\frac{y-2+2}{2\sqrt{2}y}=\frac{\sqrt{2}}{4}\)

\(\Rightarrow C\le\frac{1}{2}+\frac{\sqrt{2}}{4}=\frac{2+\sqrt{2}}{4}\)

Vậy Max C = \(\frac{2+\sqrt{2}}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Ta phải có điều kiện : \(\hept{\begin{cases}x\ge1\\y\ge2\end{cases}}\)

Thay điều kiện vào C , ta được Min C = 0 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Bình luận (0)
H24
Xem chi tiết
KN
30 tháng 5 2020 lúc 18:26

Ta có: \(3\sqrt{x+2y-1}=\sqrt{9\left(x+2y-1\right)}\le\frac{9+x+2y-1}{2}\)

\(=\frac{x+2y}{2}+4\Leftrightarrow3\sqrt{x+2y-1}-4\le\frac{x+2y}{2}\)(1)

Tương tự ta có: \(3\sqrt{y+2z-1}\le\frac{y+2z}{2}\left(2\right);3\sqrt{z+2x-1}\le\frac{z+2x}{2}\left(3\right)\)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(T=\frac{x}{3\sqrt{x+2y-1}-4}+\frac{y}{3\sqrt{y+2z-1}-4}+\frac{z}{3\sqrt{z+2x-1}-4}\)

\(\ge\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)\(=2\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\right)\)

\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=2.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)(Theo BĐT Bunhiacopxki dạng phân thức)

Đẳng thức xảy ra khi \(x=y=z=\frac{10}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 2 2020 lúc 9:47

ai đó trả lời câu hỏi này đi

Bình luận (0)
 Khách vãng lai đã xóa
VK
6 tháng 6 2020 lúc 19:52

111111111111111111111

Bình luận (0)
 Khách vãng lai đã xóa