Những câu hỏi liên quan
DD
Xem chi tiết
HC
Xem chi tiết
NM
6 tháng 5 2017 lúc 20:53

A=\(\frac{10^{2015}+1}{10^{2016}+1}\)=>10A=\(\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}\)\(\frac{10^{2016}+10}{10^{2016}+1}\)=\(\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}\)=\(\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}\)=1+\(\frac{9}{10^{2016}+1}\)

B=\(\frac{10^{2016}+1}{10^{2017}+1}\)=>10B=\(\frac{10.\left(10^{2016}+1\right)}{10^{2017+1}}=\frac{10^{2017}+10}{10^{2017}+1}\)\(\frac{\left(10^{2017}+1\right)+9}{10^{2017}+1}\)=\(\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}\)= 1+\(\frac{9}{10^{2017}+1}\)

Vì \(10^{2016}+1< 10^{17}+1\)=>\(\frac{9}{10^{2016}+1}\)>\(\frac{9}{10^{2017}+1}\)nên \(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)=>10A>10B

Vậy A>B

Bình luận (0)
HC
7 tháng 5 2017 lúc 14:48

Cảm ơn bạn nhìu nhé.

Bình luận (0)
NM
Xem chi tiết
TN
26 tháng 8 2017 lúc 14:14

Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)

\(\Leftrightarrow B>A\)

Bình luận (0)
NG
Xem chi tiết
NG
Xem chi tiết
LT
Xem chi tiết
NL
18 tháng 3 2018 lúc 20:04

Ta có :

\(A=\frac{10^{2016}+1}{10^{2015}+1}=\frac{\left(10^{2016}+1\right).10}{\left(10^{2015}+1\right).10}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10^{2017}+10}{10^{2016}+10}\)

Vì \(10^{2017}=10^{2017}\)\(10>1\)nên \(10^{2017}+10>10^{2017}+1\)( 1 )

Vì \(10^{2016}=10^{2016}\)và \(10>1\)nên \(10^{2016}+10>10^{2016}+1\)( 2 )

Từ ( 1 ) và ( 2 ) , suy ra : \(\frac{10^{2017}+10}{10^{2016}+10}>\frac{10^{2017}+1}{10^{2016}+1}\)

Vậy \(A>B\)

Bình luận (0)
NV
18 tháng 3 2018 lúc 20:16

\(B=\frac{10^{2016}+1}{10^{2017}+1}=\frac{10^{2016}+1+9}{10^{2017}+1+9}=\frac{10^{2016}+10}{10^{2017}+10}=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}=\frac{10^{2015}+1}{10^{2016}+1}\)

lm tương tự vs B ta có 

\(A=\frac{10^{2015}+1}{10^{2014}+1}\)

suy ra A>B

Bình luận (0)
BA
18 tháng 3 2018 lúc 20:28

Ta có: A=\(\frac{10^{2016}+1}{10^{2015}+1}\)

=>\(\frac{1}{A}=\frac{10^{2015}+1}{10^{2016}+1}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2016}+10}{10\left(10^{2016}+1\right)}=\frac{10^{2016}+1+9}{10\left(10^{2016}+1\right)}\)

           \(=\frac{1}{10}+\frac{9}{10^{2017}+10}\)

         \(B=\frac{10^{2017}+1}{10^{2016}+1}\)

=>\(\frac{1}{B}=\frac{10^{2016}+1}{10^{2017}+1}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2017}+10}{10\left(10^{2017}+1\right)}\)

           \(=\frac{10^{2017}+1+9}{10\left(10^{2017}+1\right)}=\frac{1}{10}+\frac{9}{10^{2018}+10}\)

\(10^{2017}< 10^{2018}=>10^{2017}+10< 10^{2018}+10\)

\(=>\frac{9}{10^{2017}+10}>\frac{9}{10^{2018}+10}=>\frac{1}{10}+\frac{9}{10^{2017}+10}>\frac{1}{10}+\frac{9}{10^{2017}+10}\)

\(=>\frac{1}{A}>\frac{1}{B}=>A< B\)

Bình luận (0)
NH
Xem chi tiết
NH
4 tháng 3 2016 lúc 20:12

cách giải 

Bình luận (0)
KL
Xem chi tiết
HP
13 tháng 5 2016 lúc 20:02

\(A=\frac{10^{2015}+1}{10^{2016}+1}\Rightarrow10A=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}\)

\(A=\frac{10^{2016}+1+9}{10^{2016}+1}=\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)

\(B=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10B=\frac{10.\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)

\(B=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

Vì 102016+1 < 102017+1

=>\(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)

=>\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)

=>10A > 10B

=>A > B

Bình luận (0)
TV
13 tháng 5 2016 lúc 20:07

\(B=\frac{10^{2016}+1}{10^{2017}+1}<\frac{10^{2016}+1+9}{10^{2017}+1+9}\)

      \(=\frac{10^{2016}+10}{10^{2017}+10}\)

      \(=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}\)

      \(=\frac{10^{2015}+1}{10^{2016}+1}=A\)

\(\Rightarrow\) B<A

Bình luận (0)
TN
13 tháng 5 2016 lúc 20:07

\(10A=\frac{10\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}=\frac{10^{2016}+1+9}{10^{2016}+1}=\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)

\(10B=\frac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

vì 102016+1<102017+1

=>\(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)

=>A>B

Bình luận (0)
NL
Xem chi tiết