Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TL
Xem chi tiết
MM
12 tháng 8 2020 lúc 22:05

Câu 2

Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2

Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1

                                          =4(K^2+K+H^2+H)+2

Vì 4(K^2+K+H^2+H) chia hết cho 4

=>4(K^2+K+H^2+H)+2 ko chia hết cho 4

Mk biết làm vậy thôi nha

Bình luận (0)
 Khách vãng lai đã xóa
BA
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết
VH
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Bình luận (2)
TV
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
NT
16 tháng 6 2018 lúc 9:56

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

Bình luận (0)
NL
29 tháng 11 2018 lúc 21:40

bài cô giao đi hỏi 

Bình luận (0)
NN
15 tháng 3 2020 lúc 21:25

chịu thôi

...............................

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết