\(\frac{1}{3}X+\frac{3}{4}X-75\%=-5\frac{1}{4}\)
\(60\%.X+\frac{2}{3}X=-76\)
\(\frac{x+1}{77}+\frac{x+2}{76}=\frac{x+3}{75}+\frac{x+4}{74}\)
Giải phương trình
<=>\(\left(\frac{x+1}{77}+1\right)+\left(\frac{x+2}{76}+1\right)=\left(\frac{x+3}{75}+1\right)+\left(\frac{x+4}{74}+1\right)\)
<=> \(\frac{x+1+77}{77}+\frac{x+2+76}{76}=\frac{x+3+75}{75}+\frac{x+4+74}{74}\)
<=> \(\frac{x+78}{77}+\frac{x+78}{76}=\frac{x+78}{75}+\frac{x+78}{74}\)
<=> \(\frac{x+78}{77}+\frac{x+78}{76}-\frac{x+78}{75}-\frac{x+78}{74}\)
<=> \(\left(x+78\right)\left(\frac{1}{77}+\frac{1}{76}-\frac{1}{75}-\frac{1}{74}\right)\)
Vì \(\frac{1}{77}+\frac{1}{76}-\frac{1}{75}-\frac{1}{74}\ne0\) nên phương trình trên <=> x + 78 = 0
<=> x = -78
Tập nghiệm của phương trình trên là S= \(\left\{-78\right\}\)
Chúc bạn học tốt !
tìm x biết
a,\(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)
b,\(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)
c,\(\left|x-1\right|+4=6\)
d, \(\frac{x}{3}=\frac{y}{5}\) và y-x=24
e, \(\left(x^2-3\right)^2=16\)
f, \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\),
g, \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)
k,\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)
l,\(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) => \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\)
Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\)
b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)= \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\)
=> \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=> \(\frac{27x}{4}=\frac{27}{40}\)
\(27x.40=27.4\)
\(1080.x=108\)
\(x=\frac{1}{10}\)
Vậy \(x=\frac{1}{10}\)
c) \(\left|x-1\right|+4=6\)
\(\left|x-1\right|=6-4\)
\(\left|x-1\right|=2\)
\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy \(x=\left[3,-1\right]\)
d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\)
e) \(\left(x^2-3\right)^2=16\)
\(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\)
\(x^2=7=>x=\sqrt{7}\)
Vậy \(x=\sqrt{7}\)
f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\)
\(\frac{2}{5}x=-\frac{4}{15}\)
\(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\)
Vậy \(x=-\frac{2}{3}\)
g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)
\(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)
\(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\)
Vậy \(x=-3\)
k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\)
\(\frac{2}{5}x=\frac{4}{15}\)
\(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\)
Vậy \(x=\frac{2}{15}\)
I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
\(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\)
\(\frac{3}{5}x=\frac{5}{14}\)
\(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\)
Vậy \(x=\frac{25}{42}\)
Bài 1: Tìm x:
a)\(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
b)\(1\frac{3}{4}\cdot x+1\frac{1}{2}=-\frac{4}{5}\)
c)\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
d)\(2\frac{3}{4}x=3\frac{1}{7}:0,01\)
e)\(2x\cdot\left(x-\frac{1}{7}\right)=0\)
\(a)\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
\(\)TỰ LÀM NHA HIHI
MI SUỐT NGÀY NGỒI MÁY TÍNH LƯỚT FACE, LÚC NÀO ĐI QUA CŨNG THẤY
bài 2 tìm x
a,\(\frac{-2}{3}.x+\frac{1}{5}=\frac{3}{10}\)
b,\(\left|x\right|-\frac{3}{4}=\frac{5}{3}\)
c,\(\frac{2}{3}.x-\frac{1}{2}=\frac{1}{10}\)
d,\(\frac{3}{5}+\frac{4}{9}:x=\frac{2}{3}\)
e,\(\left|x+75\%\right|=2\frac{1}{5}\)
i,\(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2.x\right)=0\)
k,\(\frac{4}{7}.x-\frac{2}{3}=\frac{1}{5}\)
l,\(\frac{2}{3}.x-\frac{3}{2}.x=\frac{5}{12}\)
m,\(\left|2.x-\frac{1}{3}\right|+\frac{5}{6}=1\)
n,\(\frac{1}{3}-\frac{7}{8}.x=\frac{1}{3}\)
11,\(\frac{x+2}{5}=\frac{7}{12}-1\frac{1}{4}\)
12,\(\left(2\frac{4}{5}.x-50\right):\frac{2}{3}=51\)
13,\(\frac{2}{5}+\frac{3}{5}.\left(3.x-3,7\right)=-\frac{53}{10}\)
14,\(\frac{7}{9}:\left(2+\frac{3}{4}.x\right)+\frac{5}{9}=\frac{23}{27}\)
giải phương trình sau:
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\\\)
b) \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
c)\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
d) \(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
b) Bạn kiểm tra lại đề bài
c) \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8}{16x^2-1}\left(x\ne\pm\frac{1}{4}\right)\)
\(\Leftrightarrow\frac{3}{1-4x}-\frac{2}{4x+1}+\frac{8}{16x^2-1}=0\)
\(\Leftrightarrow\frac{-3}{4x+1}-\frac{2}{4x+1}+\frac{8}{\left(4x+1\right)\left(4x-1\right)}=0\)
\(\Leftrightarrow\frac{-3\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3}{\left(4x-1\right)\left(4x+1\right)}-\frac{8x-2}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3-8x+2+8}{\left(4x-1\right)\left(4x+1\right)}=0\)
=> -20x+13=0
<=> -20x=-13
<=> \(x=\frac{13}{20}\left(tmđk\right)\)
\(\frac{1}{3}x+\frac{3}{4}x-75\%=-5\frac{1}{4}\)
A: \(75\%.x-\frac{3}{2}:\frac{5}{4}=3\frac{1}{2}+25\%\)
B:\(\left(x-\frac{3}{4}\right).50\%-\frac{2}{7}=1+\frac{3}{4}\)
C: \(\left(\frac{5}{6}-2\frac{1}{2}\right):x=\frac{2}{5}-\frac{1}{3}\)
D: \(\left(\frac{1}{4}-x\right)-\frac{1}{2}=2\frac{1}{2}+1\)
A)\(75\%.x-\frac{3}{2}:\frac{5}{4}=3\frac{1}{2}+25\%\)
<=>\(\frac{3}{4}x-\frac{6}{5}=\frac{7}{2}+\frac{1}{4}\)
<=>\(\frac{3}{4}x=\frac{7}{2}+\frac{1}{4}+\frac{6}{5}\)
<=>\(\frac{3}{4}x=\frac{99}{20}\)
<=>\(x=\frac{33}{5}\)
B)\(\left(x-\frac{3}{4}\right).50\%-\frac{2}{7}=1+\frac{3}{4}\)
<=>\(\left(x-\frac{3}{4}\right)\cdot\frac{1}{2}=\frac{7}{4}\)
<=>\(\frac{1}{2}x-\frac{3}{8}=\frac{7}{4}\)
<=>\(\frac{1}{2}x=\frac{17}{8}\)
<=>\(x=\frac{17}{4}\)
C)\(\left(\frac{5}{6}-2\frac{1}{2}\right):x=\frac{2}{5}-\frac{1}{3}\)
<=>\(-\frac{5}{3}:x=\frac{1}{15}\)
<=>\(x=-\frac{25}{3}\)
D)\(\left(\frac{1}{4}-x\right)-\frac{1}{2}=2\frac{1}{2}+1\)
<=>\(\frac{1}{4}-x-\frac{1}{2}=\frac{7}{2}\)
<=>\(-\frac{1}{4}-x=\frac{7}{2}\)
<=>\(x=-\frac{15}{4}\)
a. \(\frac{x+109}{3}+\frac{x+125}{5}+\frac{x+149}{7}+\frac{x+181}{9}=24\)24
b. \(\frac{x-96}{2}+\frac{x-88}{4}+\frac{x-76}{6}+\frac{x-60}{8}=14\)
c. \(\frac{155x-24}{51}+\frac{185x-48}{57}+\frac{205x-3}{61}\)= 16
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)