1, Tìm x,y
\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
HELP MEEE.....!!!
1. GIÚP MK VS M.N !!!
a, Tìm x, y biết : \(\frac{x-2}{4}=\frac{-16}{2-x}\)
b, Tìm x, y biết : \(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
c, Tìm x, y, z biết : /x - 6/ + / x - 10/ + /x - 2022/+/y - 2014/ + / z -2015/ = 2016
CHÚ Ý : DẤU / / LÀ DẤU GIÁ TRỊ TUYỆT ĐỐI
https://dethi.violet.vn/present/showprint/entry_id/11072330
bạn vào link trên sẽ có full đề và đáp án
p/s: nhớ k cho mình nha <3
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
Timd x,y biết
\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
Tìm x, y biết:
\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
Ai giải đúng và nhanh nhất sẽ được 3 tick
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
a) tìm x,y biết \(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
b) tìm x,y,z biết \(|x-6|+|x-10|+|x-2022|+|y-2014|+|z-2015|=2016\)
c) chứng minh \(chứng minh:3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(n\in N,n\ne0\right)\)
a)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
Giải pt:
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành:
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)
\(\Rightarrow x=2018;y=2019;z=2020\)
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)
\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)
\(x=2018,y=2019,z=2020\)
ĐK : \(\hept{\begin{cases}x>2014\\y>2015\\z>2016\end{cases}}\)
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2014}-1}{x-2014}+\frac{1}{4}-\frac{\sqrt{y-2015}-1}{y-2015}+\frac{1}{4}-\frac{\sqrt{z-2016}-1}{z-2016}=0\)
\(\Leftrightarrow\frac{x-2010-4\sqrt{x-2014}}{4\left(x-2014\right)}+\frac{y-2011-4\sqrt{y-2015}}{4\left(y-2015\right)}+\frac{z-2012-4\sqrt{z-2016}}{4\left(x-2014\right)}=0\)
\(\Leftrightarrow\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}+\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}+\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}=0\)( 1 )
Mà \(\hept{\begin{cases}\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}\ge0\forall x>2014\\\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}\ge0\forall y>2015\\\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}\ge0\forall z>2016\end{cases}}\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\hept{\begin{cases}\left(2-\sqrt{x-2014}\right)^2=0\\\left(2-\sqrt{y-2015}\right)^2=0\\\left(2-\sqrt{z-2016}\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}\sqrt{x-2014}=2\\\sqrt{y-2015}=2\\\sqrt{z-2016}=2\end{cases}}\)<=>\(\hept{\begin{cases}x=2018\\y=2019\\z=2020\end{cases}}\)( tmđk )
Vậy ( x ; y ; z ) = ( 2018 ; 2019 ; 2020 )
tìm x, y, z biết rằng: \(\frac{x^2}{2014}+\frac{y^2}{2015}+\frac{z^2}{2016}=\frac{x^2+y^2+z^2}{2017}\)
Hoặc là sai đề hoặc là x,y,z đều bằng 0.
\(^{\frac{x^2}{2014}+\frac{y^2}{2015}+\frac{z^2}{2016}=\frac{x^2+y^2+z^2}{2017}}\)
tìm x, y, z
Bài 1:
a. Tìm x biết : \(\frac{1}{2016}:2015x=\frac{-1}{2015}\)
b. Tìm các giá trị nguyên của n để phân số \(M=\frac{3n-1}{n-1}\)có giá trị là số nguyên.
c. Tính giá trị của biểu thức :\(N=xy^2z^3+x^2y^3z^4+x^3y^4z^5+...+x^{2014}y^{2015}z^{2016}\)tại \(x=-1;y=-1;z=-1\)
\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)
a, 2015x=1/2016:(-1.2015)
2015x= -2015/2016
x= -2015/2016 :2015
x= -1/2016
b, M=3n-1/n-1=3(n-1)+2/n-1=3+ 2/n-1
để M thuộc Z thì 2/n-1 thuộc z (vì 3 thuộc Z)
<=>n-1 thuộc Ư(2)
<=>n-1 thuộc (1,-1,2,-2)
<=>n thuộc (2,0,3,-1)
vậy....
1. Cho biểu thức B :
\(B=x^{2017}-2018.x^{2016}+2018.x^{2015}-2018.x^{2014}+...-2018.x^2+2018.x-1\)
TÍNH GIÁ TRỊ BIỂU THỨC VỚI x=2017
3. Cho : \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\)và xy +yz + zx=11 . TÌM x,y,z