rút gọn \(P=\left(\frac{x-4}{x^3-1}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right)\left(x\ne1\right)\)
\(P=\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1}{x^2+x+1}-\frac{x-8}{x^2+x+1}\right)\)
\(=\left(\frac{x-4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1-x+8}{x^2+x+1}\right)\)
\(=\left(\frac{x^2+2x-3}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+9}{x^2+x+1}\right)\)
\(=\left(\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right).\left(\frac{x^2+x+1}{x^2+9}\right)\)
\(=\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+9\right)}\)
\(=\frac{x+3}{x^2+9}\)với \(x\ne1\)
Ta có: P = \(\left(\frac{x-4}{x^3-1}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right)\)
P = \(\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1-x+8}{x^2+x+1}\right)\)
P = \(\left(\frac{x-4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+9}{x^2+x+1}\right)\)
P = \(\frac{x^2+2x-3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
P = \(\frac{x^2+3x-x-3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
P = \(\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
P = \(\frac{x+3}{x^2+9}\)
\(P=\left(\frac{x-4}{x^3-1}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right).\)
\(P=\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\left(1-\frac{x-8}{x^2+x+1}\right).\)
\(P=\left(\frac{x-4}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\left(\frac{x^2+x+1}{x^2+x+1}-\frac{x-8}{x^2+x+1}\right).\)
\(P=\frac{x-4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2+x+1-x+8}{x^2+x+1}\)
\(P=\frac{2x-3+x^2}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2+9}{x^2+x+1}\)
\(P=\frac{2x-3+x^2}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\frac{x^2+x+1}{x^2+9}\)
\(P=\frac{x^2+3x-x+3}{\left(x-1\right)}\cdot\frac{1}{x^2+9}\)
\(P=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)}\cdot\frac{1}{x^2+9}\)
\(P=\frac{x+3}{x^2+9}\)
Tính toán hay sai ngu có j sai ib sửa chữa ạ :>
tìm x bt \(\frac{x+1}{8}=\frac{8}{x+1}\left(x\ne1\right)\)
ta có
\(\frac{x+1}{8}=\frac{8}{x+1}\)
=> (x+1).(x+1)=8.8
=> (x+1)(x+1)=(7+1).(7+1)
=> x=7
\(\frac{x+1}{8}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=8.8\)
\(\Rightarrow\left(x+1\right)^2=8^2\)
\(\Rightarrow x+1=8\)
\(\Rightarrow x=8-1\)
\(\Rightarrow x=7\)
Tím X:
\(\frac{3}{\left(X-1\right)\left(X-3\right)}+\frac{5}{\left(X-3\right)\left(X-8\right)}+\frac{12}{\left(X-8\right)\left(X-20\right)}-\frac{1}{20}=\frac{3}{4}\)
\(\frac{2}{\left(x-1\right).\left(x-3\right)}+\frac{5}{\left(x-3\right).\left(x-8\right)}+\frac{12}{\left(x-8\right).\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Tìm x
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=-\frac{3}{4}\)
\(\frac{1}{x-1}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-8}+\frac{1}{x-8}-\frac{1}{x-20}-\frac{1}{x-20}=-\frac{3}{4}\)
\(\frac{1}{x-1}-\frac{2}{x-20}=-\frac{3}{4}\)
\(\frac{x-20-2x+2}{x^2-21x+20}=\frac{-3}{4}\)
\(-4x-72=-3x^2+63x-60\)
\(-3x^2+63x-60+4x+72=0\)
\(-3x^2+67x+12=0\)
Ko có x t/m
bt em gửi cô Thương
1)\(ĐKXĐ\hept{\begin{cases}x\ne1\\x\ne3\end{cases}}\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-4x+3}=0\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-x-3x+3}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{8}{x\left(x-1\right)-3\left(x-1\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\frac{x^2-1}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x-6}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)( tm)
Vậy nghiemj của pt x=3
2)\(x^3-x^2-9x+9=0\)
\(\Leftrightarrow x^2\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)hoặc x+3=0
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)hoặc x=-3
Vậy tập hợp nghiệm \(S=\left\{1;3;-3\right\}\)
Bài 1 dài dòng quá em :( Rút gọn bớt cũng được thì phải
Chị ơi bài 1 em sai cái gì ko ạ ? đk x khác 3 mà đúng ko
Bài 1 em không làm sai gì nhưng kết quả sai. Vì đk # 3 nên kết x = 3 không thỏa mãn em ơi :v
\(\frac{2x+9}{\left(x+1\right)\left(x+8\right)}-\frac{2x+15}{\left(x+8\right)\left(x+7\right)}+\frac{2x+10}{\left(x+7\right)\left(x+3\right)}=\frac{4}{3}\)
(2x+9)/(x+1)(x+8)-(2x+15)/(x+8)(x+7)+(2x+10)/(x+7)(x+3)=4/3
(x+1+x+8)/(x+1)(x+8)-(x+8+x+7)/(x+8)(x+7)+(x+7+x+3)/(x+7)(x+3)=4/3
1/(x+8)+1/(x+1)-1/(x+7)-1/(x+8)+1/(x+7)+1/(x+3)=4/3
1/(x+1)+1/(x+3)=4/3
(x+3+x+1)/(x+3)(x+1)=4/3
(2x+4)/(x+3)(x+1)=4/3
=>(2x+4).3=(x+3)(x+1).4
6(x+2)=4(x+3)(x+1)
3(x+2)=2(x+3)(x+1)
3x+6=2(x^2+4x+3)
3x+6=2x^2+8x+6
2x^2+8x+6-3x-6=0
2x^2+5x=0
x(2x+5)=0
=> x=0 hoac 2x+5=0
=> x=0 hoac x=-5/2
Tìm x \(\frac{2}{\left(x-1\right)\times\left(x-3\right)}+\frac{5}{\left(x-3\right)\times\left(x-8\right)}+\frac{12}{\left(x-8\right)\times\left(x-20\right)}-\frac{1}{x-20}=-\frac{3}{4}\)-3/4
Tìm x biết:
\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{3}{4}\)
\(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)+\left(x+8\right)}+\frac{10}{\left(x+8\right)\left(x+18\right)}+\frac{1}{x+18}=\frac{5}{6}\)
Tìm x;y;z