tìm các chữ số a, b sao cho abba chia hết cho 15
1.CMR
A) abba chia hết cho 11
b) aaabbb chia hết cho 37
2.tìm tất cả các số có hai chữ số là :
a) Ư(250)
b) B(11)
a) abba=1000a+100b+10b+a=1001a+110b=11(91a+10b) chia hết cho 11
b) aaabbb=1000aaa+bbb=1000.a.111+b.111=111(1000a+b) = 3.37(1000a+b) chia hết cho 37
2)
a)
Bài 7:Với a,b là các chữ số (a \(\ne\) 0).Hãy chứng tỏ:
a/ abba chia hết cho 11
b/ ababab chia hết cho 7
c/ abcabc chia hết cho 7,11,13
Bài 8:Cho A = x459y.Hãy thay x,y bởi chữ số thích hợp để A chia cho 2,3,4,5 đều dư 1.
Bài 9:Tìm số tự nhiên nhỏ nhất khác 1 sao cho khi chia cho 2,3,4,5 và 7 đều dư 1.
Bài 10:Cho số a765b;tìm a,b để khi thay vào số đã cho ta được số có 5 chữ số chia cho 2 dư 1,chia cho 5 dư 3 và chia cho 9 dư 7.
Bài 11:Hãy viết thêm 3 chữ số và bên phải số 567 để được số lẻ có 6 chữ số khác nhau,khi chia số đó cho 5 và 9 đều dư 1.
Bài 12:Tìm số có 4 chữ số chia hết cho 2,3 và 5,biết rằng khi đổi chỗ các chữ số hàng đơn vị với hàng trăm hoặc hàng chục với hàng nghìn thì số đó ko thay đổi.
Bài 13:Viết thêm một chữ số vào bên trái và một chữ số vào bên phải số 15 để được một số có 4 chữ số chia hết cho 15.
bài 11:
Gọi số phải tìm là: A = 567abc
Do A chia 5 dư 1 mà A lẻ nên c = 1
Tổng các chữ số của A là: 5 + 6 + 7 + a + b + 1 = a + b + 19
Để A chia 9 dư 1 thì a + b = 0 (loại)
a + b = 9
a + b = 18 (loại) (Có 2 chữ số bằng nhau 9 + 9)
Xét a + b = 9, a khác b và khác 5,6,7,1 ==> a = 9, b = 0 ==> A = 567901
==> a = 0, b = 9 ==> A = 567091
ĐS: 3 số phải thêm là: 901 hoặc 091
mik giúp bài 8 thôi nha
Ta nhận thấy:
a : 5 dư 1 nên y bằng 1 hoặc 6
Mặt khác a : 2 dư 1 nên y phải bằng 1. Số phải tìm có dạng a= x4591
x4591 chia cho 9 dư1 nên x + 4 + 5 + 9 + 1 chia cho 9 dư 1. vậy x chia hết cho 9 suy ra x = 0 hoặc 9. Mà x là chữ số đầu tiên của 1 số nên không thể bằng 0 vậy x = 9
Số phải tìm là : 94591
Cho các chữ số a,b khác 0 CMR;
abba chia hết cho 11
abba=ax1000+bx100+bx10+a
abba=ax(1000+1)+bx(100+10)
abba=ax1001+bx110
abba=ax11x91+bx11x10
abba=11x(ax91+bx10)
Vậy abba chia hết cho 11 (đpcm)
cho a, b là các chữ số khác 0 . Chứng tỏ rằng
a) abba chia hết cho 11
b) ababab chia hết cho 7
c)aaa chia hết cho 37
d)dddddd chia hết cho 37037
a. Ta có
abba=1000a+100b+10b+a=1001a+110b=11(91a+10b) chia hết cho 11
b Ta có
ababab=10000ab+100ab+ab=ab(10000+100+1)=ab.10101 chia hết cho 7 vì 10101 chia hết cho 7
c Ta có
aaa=100a+10a+a=111a chia hết cho 37 vì 111 chia hết cho 37
câu d tương tự nhé ( nhớ ****)
a)Ta có :abba là bội của 11 => abba chia hết cho 11.
Thật vậy : ( a + b ) - ( b + a ) = ( a + b ) - ( a +b ) = 0
0 chia hết cho 11 nên abba chia hết cho 11.
Vậy....
Với a, b là các chữ số khác 0. Hãy chứng minh rằng : abba chia hết cho 11
abba=a1000+b100+b10+a1
=a(1000+1)+b(10+100)
=a.1001+b.110
=a.(11.91)+(11.10) chia hết cho 11
Ta có :abba là bội của 11 => abba chia hết cho 11.
Thật vậy : ( a + b ) - ( b + a ) = ( a + b ) - ( a +b ) = 0
0 chia hết cho 11 nên abba chia hết cho 11.
Vậy....
Ta có
abba =1000a + 100b + 10b + a
= 1001 a + 110b
=11.91.a + 11. 10 .b
= 11 . ( 91a + 10b )
=> 11 có dạng ước của abba
Chúc bạn hk tốt !
Cho a,b là các chữ số khác 0.Hãy chứng tỏ rằng:
a. abba chia hết cho 11 b.ababab chia hết cho 7 aaabbb chia hết cho 37 d.abab-baba chia hết cho 9 và 101
Câu a, b em xem trong mục câu hỏi tương tự nhé!
c) \(\overline{aaabbb}=\overline{aaa}.1000+\overline{bbb}=a.111.1000+b.111=\left(a.1000+b\right).111⋮37\)
vì 111=37.3 chia hết cho 37
d)
\(\overline{abab}-\overline{baba}=a.1000+b.100+a.10+b-b.1000-a.100-b.10-a=a.909-b.909\)
=909. (a-b)=9.101.(a-b) chia hết cho 9 và 101
a) abba chia hết cho 11
Ta có abba = 1000a + 100b + 10 b + a
= (1000a + a) + (100b +10b)
= 1001a + 110b
= 11.91.a + 11.10.b
= 11.(91a + 10b) \(⋮\)11
b) ababab \(⋮\)7
=> ababab = 100 000a + 10 000b + 1000a + 100b + 10a + b
= (100 000a + 1000a + 10a) + (10 000b + 100b + b)
= 101010a + 10101b
= 7.14430a + 7. 1443b
= 7.(14430a + 1443b) \(⋮\)7
c) aaabbb \(⋮\)37
Ta có : aaabbb = aaa000 + bbb
= 100000a + 10000a + 1000a + 100b + 10b + b
= (100000a + 10000a + 1000a) + (100b + 10b + b)
= 111000a + 111b
= 37. 30000a + 37.3b
= 37.(30000a + 3b)
d) abab - baba \(⋮\)9 và 101
Ta có :abab - baba \(⋮\)9 và 101 <=> abab - baba \(⋮\)9.101 <=> abab - baba \(⋮\)909
Lại có: abab - baba = (1000a + 100b + 10a + b) - (1000b + 100a + 10b + a)
= 1000a + 100b + 10a + b - 1000b - 100a - 10b - a
= (1000a + 10a - 100a - a ) + (100b + b - 1000b - 10b)
= a(1000 + 10 - 100 - 1) + b(100 + 1 - 1000 - 10
= a. 909 + b. (-909)
Vì \(\hept{\begin{cases}a.909⋮909\\b.\left(-909\right)⋮909\end{cases}}\)
=> \(a.909+b.\left(-909\right)⋮909\)
=> \(a.909+b.\left(-909\right)⋮101\times9\)
=> \(\hept{\begin{cases}a.909+b.\left(-909\right)⋮9\\a.909+b.\left(-909\right)⋮11\end{cases}}\)
a) Tìm các chữ số a,b sao cho số 7a4b (gạch đầu) chia hết cho 4 và chia hết cho 7
b) Tìm các chữ số a,b sao cho số 2a3b (gạch đầu) chia hết cho 6 và chia hết cho 7
bài 1:Dùng 3 trong 4 chữ số 3; 6; 9; 0 viết tất cả các số tự nhiên có 3 chữ số sao cho số đó:
a)Chia hết cho 9.
b)Chia hết cho 3 mà không chia hết cho 9.
bài 2:
a) Tìm các chữ số a và b sao cho a –b = 4 và 87ab ⋮ 9
b) Tìm các chữ số a và b sao cho a –b = 4 và 7a5b1 ⋮ 3
Với a, b là các chữ số khác 0. Hãy chứng minh rằng:
a) abba chia hết cho 11 b) aaabbb chia hết cho 37
c) ababab chia hết cho 7 d) abab - baba : 9 với a>b
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) ⋮ 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) ⋮ 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) ⋮ 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) 9
nhanh giữu ba.... OxO!