Những câu hỏi liên quan
NA
Xem chi tiết
PH
26 tháng 7 2017 lúc 20:58

đkxđ là \(x\ne1;x>0\)

\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

gtnn 3/4

ý c bạn tự làm nha mk chịu

Bình luận (0)
NA
27 tháng 7 2017 lúc 15:12

mình cảm ơn bạn nha 

Bình luận (0)
TN
Xem chi tiết
NH
Xem chi tiết
LL
6 tháng 2 2019 lúc 21:45

--xyz=4 => √xyz=2xyz=2
--Xét:
*√zx+2√z+2=√zx+2√z+√xyz=√z(√xy+√x+2)zx+2z+2=zx+2z+xyz=z(xy+x+2)
*Tương tự suy ra √xy+√x+2=√x(√yz+√y+1)xy+x+2=x(yz+y+1)
--Thay vào ta có
*2√z√zx+2√z+2=2√xy+√x+22zzx+2z+2=2xy+x+2
*2√z√zx+2√z+2+√x√xy+√x+2=√x+2√xy+√x+2=√x+√xyz√x(√yz+√y+1)=√yz+1√yz+√y+12zzx+2z+2+xxy+x+2=x+2xy+x+2=x+xyzx(yz+y+1)=yz+1yz+y+1
--Đến đây cộng với Số hạng còn lại ta được A =1 
=>√A=1.....A=1.....
p/s: có chỗ nào sai bạn nhắc mình nha

Bình luận (0)
H24
6 tháng 2 2019 lúc 21:47

\(\sqrt{A}=1...A=1\)  giải thích hộ mình đoạn đấy với ạ :>

Bình luận (0)
NH
6 tháng 2 2019 lúc 22:01

sao lại có zx+2z+2 đằng sau chỗ rút căn z vậy bn

cn chỗ dưới bn lấy dữ kiện từ đâu vào đâu vậy?

Bình luận (0)
NT
Xem chi tiết
TN
18 tháng 8 2015 lúc 15:56

C=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{\left(\sqrt{x}+2\right).\left(x-1\right)-\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{x\sqrt{x}-\sqrt{x}+2x-2-\left(x-1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{x-1+x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{\left(x-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x}\)

Bình luận (0)
TD
Xem chi tiết
NH
Xem chi tiết
vu
Xem chi tiết
NT
12 tháng 7 2017 lúc 20:12

\(x=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5-1}\right)^2}}{\sqrt{20}}=\frac{2\sqrt{5}}{\sqrt{20}}=1\)

=>P=(1+1-1)2016=1

Bình luận (0)
NH
Xem chi tiết
LA
11 tháng 11 2018 lúc 21:27

\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)

\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)

\(=x-2\sqrt{x}+4\)

=.= hok tốt!!

Bình luận (0)
TN
Xem chi tiết
AM
26 tháng 12 2021 lúc 0:20

\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Bình luận (0)