Những câu hỏi liên quan
HN
Xem chi tiết
MT
16 tháng 7 2016 lúc 21:10

a+b+c=0

=>a+b=-c;b+c=-a;a+c=-b

Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)

Bình luận (0)
H24
Xem chi tiết
ST
13 tháng 7 2017 lúc 20:15

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

Bình luận (0)
DL
13 tháng 7 2017 lúc 20:07

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

Bình luận (0)
VV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TL
23 tháng 12 2018 lúc 13:10

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Suy ra:

 \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow a=\frac{b+c}{2}=\frac{1}{2}\times\left(b+c\right)\)

\(\frac{b}{a+c}=\frac{1}{2}\Rightarrow b=\frac{a+c}{2}=\frac{1}{2}\times\left(a+c\right)\)

\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow c=\frac{a+b}{2}=\frac{1}{2}\times\left(a+b\right)\)

Thay  \(a=\frac{1}{2}\times\left(b+c\right)\);  \(b=\frac{1}{2}\times\left(a+c\right)\)\(c=\frac{1}{2}\times\left(a+b\right)\) vào P ta được:

\(\frac{b+c}{\frac{1}{2}\times\left(b+c\right)}+\frac{c+a}{\frac{1}{2}\times\left(a+c\right)}+\frac{a+b}{\frac{1}{2}\times\left(a+b\right)}\)

\(=\frac{\text{ }1\text{ }}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}\)

\(=2+2+2=6\)

Vậy giá trị của P  là 6

      

Bình luận (0)
HN
Xem chi tiết
PK
Xem chi tiết
PK
11 tháng 2 2018 lúc 8:00

bt làm rồi ko cần giải nha 

Bình luận (0)
TP
11 tháng 2 2018 lúc 8:01

v đăng lên làm j?:/

Bình luận (0)
H24
11 tháng 2 2018 lúc 8:04

bt làm thì đăng lên làm j vậy.Chắc đăg câu hỏi lên xog rùi tra mạng.Lúc tìm thấy kq rùi thì lại vô câu hỏi của mk bảo bt rồi chớ j 

Bình luận (0)
BB
Xem chi tiết
MT
6 tháng 10 2015 lúc 20:54

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

\(\text{Suy ra: }\frac{a}{b+c}=\frac{1}{2}\Rightarrow b+c=\frac{a}{\frac{1}{2}}=2a\)

\(\frac{b}{a+c}\Rightarrow\frac{1}{2}\Rightarrow a+c=\frac{b}{\frac{1}{2}}=2b\)

\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow a+b=\frac{c}{\frac{1}{2}}=2c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

Bình luận (0)
DH
Xem chi tiết