Cho x>0, y>0 và x+y \(\ge\)6. Tìm gtnn của bthuc \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Cho x>0,y>0 thỏa mãn x+y \(\ge\)6. Tìm giá trị nhỏ nhất của biểu thức
P=3x+2y+\(\frac{6}{x}+\frac{8}{y}\)
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(P=\frac{3}{2}\left(x+y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(\ge\frac{3}{2}.6+2\sqrt{\frac{3x}{2}.\frac{6}{x}}+2\sqrt{\frac{8}{y}.\frac{y}{2}}=9+6+4=19\)
\("="\Leftrightarrow x=2;y=4\)
các bạn biết ronaldo là ai không ?
Cho x>0, y>0 và x+y>= 6. Tìm GTNN của biểu thức P= 3x+2y+6/x + 8/y
Cho x > 0 , y > 0 và \(x+y\ge6\). Tìm GTNN của biểu thức P = 3x + 2y + \(\frac{6}{x}+\frac{8}{y}\)
Ta có : P = \(3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(\Rightarrow P=\left[\frac{6}{x}+\frac{3}{2}x\right]+\left[\frac{8}{y}+\frac{1}{2}y\right]+(\frac{3}{2})(x+y)\)
\(\Rightarrow6+4+\frac{3}{2}\cdot6\)
\(\Rightarrow A\ge19\)
Vậy Amin = 19 => x = 2 với y = 4
\(Q=\frac{2}{x}+\frac{3}{y}+\frac{6}{3x+2y}\)
cho \(xy=6;x>0;y>0\)
tìm gtnn của Q
Tìm GTNN của A = \(\frac{3}{x}+\frac{1}{\left(x-2\right)^2}\) với x>2
Cho x, y dương vào x+y\(\ge\)6
Tìm GTNN của P=3x+2y\(+\frac{6}{x}+\frac{8}{y}\)
Các bn giải hộ mk ạ :D
Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé
Câu 2
\(\frac{3}{2}x+\frac{6}{x}\ge6\); \(\frac{1}{2}y+\frac{8}{y}\ge4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng các bĐT trên
=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)
MinP=19 khi x=2;y=4
\(x,y>0,x+y\ge6.\)TÍnh GTNN:\(B=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(B=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(=\frac{3x}{2}+\frac{6}{x}+\frac{3x}{2}+\frac{y}{2}+\frac{8}{y}+\frac{3y}{2}\)
Áp dụng Cauchy ta được :
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{8y}{2y}}=4\)
\(\Rightarrow B\ge6+4+\frac{3\left(x+y\right)}{2}\ge6+4+9=19\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=6\\\frac{y}{2}=\frac{8}{y}\\\frac{3x}{2}=\frac{6}{x}\end{cases}\Leftrightarrow x=2;y=4}\)
cho x>0, y>0 và x+y\(\ge6\)
tìm Min của: A=\(3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(2A=6x+4y+\frac{12}{x}+\frac{16}{y}=3x+\frac{12}{x}+y+\frac{16}{y}+3x+3y\)
Áp dụng bất đẳng thức cô si cho 2 số dương, ta có:
\(3x+\frac{12}{x}\ge2.\sqrt{36}=12\)
\(y+\frac{16}{y}\ge2\sqrt{16}=8\)
Lại có\(x+y\ge6\Rightarrow3x+3y\ge18\)
Vậy \(2A\ge12+8+18\Leftrightarrow2A\ge38\Leftrightarrow A\ge19\) \(a=19\Leftrightarrow x=2;y=4\)
Tìm GTNN của D=5x+3y+\(\frac{12}{x}+\frac{16}{y}\) (x,y>0 và x+y\(\ge\)6)
Áp dụng bất đẳng thức \(AM-GM\) đối với từng bộ số trong \(D\) ta có:
\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy, GTNN của \(D\) là \(32\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Tìm GTNN của D= 5x+3y+\(\frac{12}{x}+\frac{16}{y}\) (x,y>0 và x+y\(\ge\) 6)
Cho x, y>0 và thỏa mãn \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(2P=6x+4y+\frac{12}{x}+\frac{16}{y}\)
\(=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+3\left(x+y\right)\)
\(\ge2\sqrt{3x\cdot\frac{12}{x}}+2\sqrt{y\cdot\frac{16}{y}}+3\cdot6=12+8+18=38\)( bđt AM-GM và giả thiết x + y ≥ 6 )
=> P ≥ 19
Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x=\frac{12}{x}\\y=\frac{16}{y}\\x+y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy MinP = 19
Ta có: \(P=3x+2y+\frac{6}{x}+\frac{8}{y}=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)\)
Vì \(\frac{3}{2}x+\frac{3}{2}y=\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6;\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)
\(\Rightarrow P\ge9+6+4=19\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}x+y=6\\\frac{3x}{2}=\frac{6}{x}\\\frac{y}{2}=\frac{8}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy GTNN của P là 19