Những câu hỏi liên quan
H24
Xem chi tiết
TD
9 tháng 1 2018 lúc 19:00

Ta có :

A = 2 + 22 + ... + 22010

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

A = 2 . 3 + 23 . 3 + ... + 22009 . 3

A = 3 . ( 2 + 23 + ... + 22009 ) \(⋮\)3

A = 2 + 22 + ... + 22010

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

A = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 22008 . ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + ... + 22008 . 7

A = 7 . ( 2+ 24 + ... + 22008 ) \(⋮\)7

B = 3 + 32 + ... + 32010

B = ( 3 + 32 ) + ... + ( 32009 + 32010 ) 

Làm tương tự chứng minh được B \(⋮\)4

B = 3 + 32 + ... + 32010

B = ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )

Làm tương tự chứng minh được B \(⋮\)13

Bình luận (0)
H24

a, \(A=2+2^2+...+2^{2010}\)

\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(\Leftrightarrow A=2.3+2^3.3+...+2^{99}.3\)

\(\Leftrightarrow A=3\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 

Bình luận (0)
LD
9 tháng 1 2018 lúc 19:11

a) Ta có : A=(2+23+25)+(22+24+26)+.....+(22006+22008+22010)

                  A=2.(1+22+24)+22.(1+22+24)+...+22006.(1+22+24)

                A=2.21            +22.21             +...+22006.21

                A= 21.(2+22+...+22006)

                A=3.7.(2+22+....+22006)   chia hết cho cả 3 và 7

b)b1. Ta có : B=(3+32)+...+(32009+32010)

                    B=3.(1+3)+...+32009.(1+3)

                    B=3.4        +...+32009.4

                    B= 4.(3+...+32009) chia hết cho 4

b2)Ta có : B= (3+32+33)+...+(32008+32009+32010)

                 B=3.(1+3+32)+...+32008.(1+3+32)

                 B= 3.13    +.....+32008.13

                 B=13.(3+.....+32008) chia hết cho 13

NHỚ KICK CHO MÌNH NHA

Bình luận (0)
TT
Xem chi tiết
LM
Xem chi tiết
NH
29 tháng 12 2023 lúc 20:53

A = n3 + n2 + 3

   n ⋮ 3⇒ n2 ⋮ 3

⇒ n2 ⋮ 32 (Tính chất của một số chính phương)

⇒ n2 ⋮ 9 

 ⇒  n2.n ⋮ 9

⇒n2.n + n2 ⋮ 9; mà  3 không chia hết cho 9 

⇒ n2.n + n2 + 3 không chia hết cho 9

Bình luận (0)
NM
Xem chi tiết
H24
Xem chi tiết
DT
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Bình luận (0)
NK
Xem chi tiết
NA
4 tháng 12 2014 lúc 16:16

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

Bình luận (0)
NB
10 tháng 12 2014 lúc 10:48

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

Bình luận (0)
H24
4 tháng 2 2017 lúc 12:57

em chịu!!!!!!!!!!!

Bình luận (0)
VQ
Xem chi tiết
TA
Xem chi tiết
NL
25 tháng 7 2017 lúc 8:31

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

Bình luận (0)
H24
Xem chi tiết
LD
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Bình luận (0)
NN
10 tháng 12 2017 lúc 21:36

Thanks bạn

Bình luận (0)
DL
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Bình luận (0)
 Khách vãng lai đã xóa