CHO 2 số x,y thõa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
Xác định x,y để xy đạt GTNN
Cho 2 số x,y thỏa mãn đẳng thức 2x^2+1/x^2+y^2/4=4 Xác định x,y để tích xy đạt GTNN
Cho hai số x , y thỏa mãn đẳng thức\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4.\)Xác định x , y để tích xy đạt giá trị nhỏ nhất .
Cho \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
Xác định x,y để x,y đạt GTNN
x2-2+\(\frac{1}{x^2}\) +x2-xy+\(\frac{y^2}{4}=2-xy\)
=>\(\left(x-\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
Do VT\(\ge0\)=> 2-xy\(\ge0\)
=>xy\(\le2\)
Vậy Maxxy=2 (dấu bằng tự làm)
à mình đọc nhầm tưởng là gtln.
\(x^2-2+\frac{1}{x^2}+x^2\)\(+xy+\frac{y^2}{4}=2+xy\)
=>\(\left(x-\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2\)=2+xy
Do VT\(\ge0\)=> 2+xy\(\ge0\)
=>xy\(\ge-2\)
Vậy Minxy=2
1)tìm x,y(x,y>=0) nguyên thõa mãn \(x^2y^2-x^2-3y^2-2x-1=0\)
2)Cho tam giác BAC,gọi M là 1 điểm nằm trong tam giác.CÁc đường AM,BM,CM lần lượt cắt BC,CA,AB tại D,E,F.Tính P=\(\frac{AM}{AD}+\frac{BM}{BE}+\frac{CM}{CF}\)
3)Tìm x,y để xy đạt giá trj lớn nhất thõa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
4)Biết a,b>1. Tìm MinQ=\(\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
3. \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(x^2\left(2x^2+\frac{1}{x^2}+\frac{y^2}{4}\right)=4x^2\)
\(2x^4+1+\frac{x^2y^2}{4}=4x^2\)
\(\frac{x^2y^2}{4}=4x^2-2x^4-1\)
\(x^2y^2=16x^2-8x^4-4=-8\left(x^4-2x^2+1\right)+4=-8\left(x^2-1\right)^2\le4\)
\(xy\le2\) do đó xy min =2
<=> x=-1,y=-2
x=1 y=2
x=1 y=-2
x=-1 y=2
1,Tìm các số nguyên x,y thỏa mãn \(x^2y^2-x^2-3y^2-2x-1=0\).
2,Tìm các số nguyên x,y thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\) để cho tích xy đạt giá trị lớn nhất.
Cho x,y là các số khác 0 và thõa mãn: \(\frac{x^2}{y}+\frac{y^2}{x}+2\left(x+y\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{2}{xy}=4\) tính S=x+y
1/cho số a,b,c thõa mãn diều kiện abc =2006
tính P=\(\frac{2006a}{ab+2006a+2006}-\frac{b}{bc+b+2006}+\frac{c}{ac+c-1}\)
2/ cho x,y là 2 số duongr thõa mãn x+y<1
tìm GTNN của A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}\)
3/chứng minh rằng nếu a,b,c là chiều dài 3 cạnh của 1 tam giác thì
ab+bc>=\(a^2+b^2+c^2\)<2(ab+bc+ca)
4/tìm x,y,z biết
\(\frac{x}{y+2+1}-\frac{y}{x+2+2}-\frac{z}{x+y-3}=x+y+z\)
5/tìm GTNN của biểu thức
\(\sqrt{x-2}+\sqrt{y-4}\)biết x+y=8
Cho 2 số x, y thỏa mãn : \(8x^2+y^2+\frac{1}{4x^2}=4\)
xác định x, y để tích x.y đạt giá trị nhỏ nhất.
Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy