Những câu hỏi liên quan
KN
Xem chi tiết
VN
16 tháng 4 2019 lúc 19:49

\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}\)

\(=\frac{10-1}{10!}+\frac{11-2}{11!}+...+\frac{1000-991}{1000!}\)

\(=\frac{10}{10!}-\frac{1}{10!}+\frac{11}{11!}-\frac{1}{11!}+...+\frac{1000}{1000!}-\frac{1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\left(đpcm\right)\)

Bình luận (0)
LD
Xem chi tiết
NQ
Xem chi tiết
DA
Xem chi tiết
H24
18 tháng 5 2016 lúc 15:25

mik không biết khó quá

Bình luận (0)
TT
Xem chi tiết
PN
7 tháng 5 2016 lúc 15:16

Ta đặt biểu thức đã cho là A

suy ra A < (10-1)/10! + (11-1)/11! +...+ (1000-1)/1000!

=> A < 10/10! - 1/10! + 11/11! - 1/11! +...+ 1000/1000! - 1/1000!

=> A < 1/9! - 1/10! + 1/10! - 1/11! +...+ 1/999! - 1/1000!

=> A < 1/9! - 1/1000! < 1/9!

Vậy A < 1/9!

Chúc bạn hoc tốt

Bình luận (0)
H24
Xem chi tiết
KS
28 tháng 7 2018 lúc 18:07

\(\frac{9}{10!}+\frac{10}{11!}+...+\frac{999}{1000!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+...+\frac{1000-1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)

                         đpcm

Tham khảo nhé~

Bình luận (0)
NM
Xem chi tiết
DM
14 tháng 3 2016 lúc 15:52

10! là sao?

Bình luận (0)
YS
14 tháng 3 2016 lúc 15:58

Miu Ti 10! là 10 giai thừa đó

Như vầy nè: 10! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10

Số nào giai thừa thì nhân từ 1 đến số đó, cụ thể:

a! = 1 x ...... x ... x a

2! = 1 x 2

3! = 1 x 2 x 3

Bình luận (0)
H24
14 tháng 3 2016 lúc 17:05

giai thừa là gi

no

jhhnb

Bình luận (0)
NH
Xem chi tiết
TK
11 tháng 5 2019 lúc 17:09

Câu 2 sai đề, thử rồi

Bình luận (0)
HT
Xem chi tiết
PQ
7 tháng 3 2018 lúc 22:27

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)

Bình luận (0)