Những câu hỏi liên quan
PS
Xem chi tiết
KG
Xem chi tiết
NT
18 tháng 8 2023 lúc 18:18

\(3x^2+3xy-17=7x-2y\)

\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)

\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)

\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)

\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)

\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)

Bình luận (0)
H24
Xem chi tiết
KL
7 tháng 1 2021 lúc 10:32

2x2 + 2y2 + 3xy - x + y + 1 = 0

2x2 + 2y2 + 4xy - xy - x + y + 1 = 0

(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0

2(x + y)2 - x(y + 1) + (y + 1) = 0

2(x + y)2 + (y + 1)(1 - x) = 0

Do (x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0

\(\Rightarrow y+1=0;1-x=0\)

*) y + 1 = 0

y = -1

*) 1 - x = 0

x = 1

Với x = 1; y = -1, ta có:

B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018

= 1 + 22018

Bình luận (0)
ZN
Xem chi tiết
2M
26 tháng 5 2021 lúc 16:44

47659:9

Bình luận (0)
 Khách vãng lai đã xóa
NC
26 tháng 5 2021 lúc 17:01

M giải luôn nha

\(\frac{1}{2}=\frac{x^2}{\left(y+1^2\right)}+\)\(\frac{y^2}{\left(x+1\right)^2}\) \(\ge\frac{2xy}{\left(x+1\right)\left(y+1\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\ge4xy\)

\(\Leftrightarrow3xy\le x+y+1\)

Dấu " = " xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}=\frac{y^2}{\left(x+1\right)^2}\\3xy=x+y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\\3x^2-2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=1\left(tm\right)\\x=y=-\frac{1}{3}\left(tm\right)\end{cases}}\)

Vậy ( x ; y ) ......

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
H24
10 tháng 1 2022 lúc 21:46

x,y∈Z không bạn

Bình luận (1)
H24
10 tháng 1 2022 lúc 21:51

\(3xy+x-3y=5\\ \Rightarrow x\left(3y+1\right)-3y-1=5-1\\ \Rightarrow x\left(3y+1\right)-\left(3y-1\right)=4\\ \Rightarrow\left(x-1\right)\left(3y-1\right)=4\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,3y-1\in Z\\x-1,3y-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\end{matrix}\right.\)

Ta có bảng:

x-1124-1-2-4
3y-1421-4-2-1
x2350-1-3
y\(\dfrac{5}{3}\left(loại\right)\)1\(\dfrac{2}{3}\left(loại\right)\)-1\(-\dfrac{1}{3}\left(loại\right)\)0

Vậy \(\left(x,y\right)\in\left\{\left(3;1\right);\left(0;-1\right);\left(-3;0\right)\right\}\)

 

Bình luận (1)
DD
Xem chi tiết
NK
Xem chi tiết
AN
10 tháng 3 2017 lúc 9:42

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

Bình luận (0)
SQ
9 tháng 3 2017 lúc 20:11

mình chưa học

Bình luận (0)
H24
9 tháng 3 2017 lúc 21:13

tớ không biết

Bình luận (0)
TA
Xem chi tiết
PC
3 tháng 10 2018 lúc 20:29

Ta có: 3xy=x+y+1

\(\Leftrightarrow4xy=xy+x+y+1\)

\(\Leftrightarrow4xy=\left(x+1\right)\left(y+1\right)\) 

Lai có:\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=0\)

\(\Leftrightarrow\left(\frac{x}{y+1}-\frac{y}{x+1}\right)^2=0\)

Bình luận (0)
TA
5 tháng 10 2018 lúc 19:09

giải tiếp hộ t với. sao t tìm ra 4 nghiệm nhưng thử lại chỉ 2 cái đc

Bình luận (0)
HN
Xem chi tiết
TH
11 tháng 4 2022 lúc 10:25

-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)

-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)

\(\Rightarrow x=-1;y=2\)

-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:

\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)

Bình luận (0)