Những câu hỏi liên quan
TD
Xem chi tiết
HM
Xem chi tiết
H24
29 tháng 11 2018 lúc 20:12

Tuowgn đương chứng minh: A= \(\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\) không là số tự nhiên.

\(0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) => n-2 <A<n+1 =<A không phải là 1 số tự nhiên

Bình luận (0)
NN
Xem chi tiết
LB
Xem chi tiết
NQ
28 tháng 2 2018 lúc 22:48

Đặt A = 1/1^2+1/2^2+.....+1/n^2

Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)

Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n

= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n

= 2 - 1/n < 2 (2)

Từ (1) và (2 => 1 < A < 2

=> A ko phải là 1 số tự nhiên

Tk mk nha

Bình luận (0)
PD
28 tháng 2 2018 lúc 22:50

Đặt A = 1/1^2+1/2^2+.....+1/n^2

Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)

Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n

= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n

= 2 - 1/n < 2 (2)

Từ (1) và (2 => 1 < A < 2

=> A ko phải là 1 số tự nhiên


 

Bình luận (0)
PV
Xem chi tiết
NC
Xem chi tiết
HH
19 tháng 1 2019 lúc 20:12

sai đề bài

Bình luận (0)
NC
25 tháng 7 2019 lúc 9:47

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

Bình luận (0)
PV
Xem chi tiết
ND
Xem chi tiết
TL
19 tháng 4 2020 lúc 12:09

Ta có A>1

\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

=> 1<A<2 => A không là số tự nhiên

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)

Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\left(2\right)\)

Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

\(\Rightarrowđpcm\)

Bình luận (0)
 Khách vãng lai đã xóa
GF
21 tháng 7 2021 lúc 18:02

undefinedk cho

mk nha cảm ơn

các bn nhé!!!!

Bình luận (0)
 Khách vãng lai đã xóa
XO
21 tháng 7 2021 lúc 17:24

Ta có \(\frac{1}{2^2}=\left(\frac{1}{2}\right)^2>0;\frac{1}{3^2}=\left(\frac{1}{3}\right)^2>0;...;\frac{1}{n^2}=\left(\frac{1}{n}\right)^2>0\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>0\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\)(1)

Lại có \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}=1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(=2-\frac{1}{n+1}< 2\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}< 2\)(2)

Từ (1) và (2) => \(1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không là 1 số tự nhiên 

Bình luận (0)
 Khách vãng lai đã xóa