Tính tổng \(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính
\(\frac{5}{4.6}\)+\(\frac{5}{6.8}+\frac{5}{8.10}+\frac{5}{10.12}+...+\frac{5}{298.300}\)
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)=\frac{5}{2}.\frac{37}{150}=\frac{37}{60}\)
tính nhanh
\(\frac{5}{4.6}\)+\(\frac{5}{6.8}\)+\(\frac{5}{8.10}\)+...+\(\frac{5}{298.300}\)
\(\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+...+\frac{5}{298\cdot300}\)
\(=\frac{5}{2}\cdot\left(\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{298\cdot300}\right)\)
\(=\frac{5}{2}\cdot\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\cdot\left(\frac{1}{4}-\frac{1}{300}\right)\)
\(=\frac{37}{60}\)
Tính tổng
5/4.6+5/6.8+5/8.10+....+5/298.300
=5/2(1/4-1/6+1/6-1/8+...+1/208-1/300)
=5/2(1/4-1/300)
=5/2.37/150=37/60
Tính \(B=\frac{3}{2.4}-\frac{5}{4.6}+\frac{7}{6.8}-\frac{9}{8.10}+\frac{11}{10.12}-...+\frac{2019}{2018.2020}\)
\(B=\frac{3}{2.4}-\frac{5}{4.6}+\frac{7}{6.8}-\frac{9}{8.10}+...+\frac{2019}{2018.2020}\)
\(B=\frac{3}{2.1.2.2}-\frac{5}{2.2.2.3}+\frac{7}{2.3.2.4}-\frac{9}{2.4.2.5}+...+\frac{2019}{2.1009.2.1010}\)
\(B=\frac{1}{4.}.\left(\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+...+\frac{2019}{1009.1010}\right)\)
\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{3}{2}-\frac{5}{2}+\frac{5}{3}+\frac{7}{3}-\frac{7}{4}-\frac{9}{4}+\frac{9}{5}+...+\frac{2019}{1009}-\frac{2019}{1010}\right)\)
\(B=\frac{1}{4.}.\left(\frac{3}{1}-4+4-4+4-...+4-\frac{2019}{1010}\right)\)
\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{2019}{1010}\right)=\frac{1011}{4040}\)
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{4}{9}-\frac{1}{5}\)
\(S=\frac{11}{45}\)
\(\frac{x}{2^2}\)+\(\frac{x}{2^3}\) +\(\frac{x}{2^4}\) =\(\frac{x}{3^2}\) +\(\frac{x}{3^3}\) +\(\frac{x}{3^4}\) là x =
tính nhanh
\(Q=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{98.100}\)
\(\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)
= \(\frac{5}{2}-\frac{5}{4}+\frac{5}{4}-\frac{5}{6}+...+\frac{5}{98}-\frac{5}{100}\)
= \(\frac{5}{2}-\frac{5}{100}\)
= \(\frac{49}{50}\)
\(Q=\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)
\(=5\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{5}{2}.2.\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{5}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{5}{2}.\frac{49}{100}=\frac{49}{40}\)
\(\Rightarrow Q=\frac{49}{40}\)
Tính:
\(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
tính nhanh:\(\frac{2}{2.4}\)+ \(\frac{2}{4.6}\)+\(\frac{2}{6.8}\)+\(\frac{2}{8.10}\)+\(\frac{2}{10.12}\)+\(\frac{2}{12.14}\)
mn giải cách lớp 5 đc ko ạ